Laihao Ding, Ander Lamaison, Hong Liu, Shuaichao Wang, Haotian Yang
{"title":"在余度消失的3图上Turán密度","authors":"Laihao Ding, Ander Lamaison, Hong Liu, Shuaichao Wang, Haotian Yang","doi":"10.1112/jlms.70281","DOIUrl":null,"url":null,"abstract":"<p>For a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-uniform hypergraph (or simply <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graph) <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>, the codegree Turán density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)$</annotation>\n </semantics></math> is the supremum over all <span></span><math>\n <semantics>\n <mi>α</mi>\n <annotation>$\\alpha$</annotation>\n </semantics></math> such that there exist arbitrarily large <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-vertex <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> in which every <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(k-1)$</annotation>\n </semantics></math>-subset of <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$V(H)$</annotation>\n </semantics></math> is contained in at least <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mi>n</mi>\n </mrow>\n <annotation>$\\alpha n$</annotation>\n </semantics></math> edges. In this paper, we study the problem of what 3-graphs <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> satisfy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math>. We find that this is closely related to the uniform Turán density <span></span><math></math>, which is the supremum over all <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> such that there are infinitely many <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-free <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-graphs <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> satisfying that any induced linear-size subhypergraph of <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> has edge density at least <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>. We prove that, for every 3-graph <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math> implies <span></span><math></math>. We also introduce a layered structure for 3-graphs which allows us to obtain the reverse implication: Every layered 3-graph <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> with <span></span><math></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)=0$</annotation>\n </semantics></math>. Along the way, we answer in the negative a question of Falgas-Ravry, Pikhurko, Vaughan, and Volec [J. Lond. Math. Soc. (2) <b>107</b> (2023), 1660–1691] about whether <span></span><math></math> always holds. In particular, we construct counterexamples <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> with positive but arbitrarily small <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>π</mi>\n <mi>co</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\pi _{\\mathrm{co}}(F)$</annotation>\n </semantics></math> while having <span></span><math></math>. Our proof relies on a random geometric construction, graph distributions, Ramsey's theorem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán density due to Reiher, Rödl, and Schacht [J. Lond. Math. Soc. <b>97</b> (2018), no. 1, 77–97].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On 3-graphs with vanishing codegree Turán density\",\"authors\":\"Laihao Ding, Ander Lamaison, Hong Liu, Shuaichao Wang, Haotian Yang\",\"doi\":\"10.1112/jlms.70281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-uniform hypergraph (or simply <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-graph) <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>, the codegree Turán density <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mi>co</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\pi _{\\\\mathrm{co}}(F)$</annotation>\\n </semantics></math> is the supremum over all <span></span><math>\\n <semantics>\\n <mi>α</mi>\\n <annotation>$\\\\alpha$</annotation>\\n </semantics></math> such that there exist arbitrarily large <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-vertex <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-free <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> in which every <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(k-1)$</annotation>\\n </semantics></math>-subset of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$V(H)$</annotation>\\n </semantics></math> is contained in at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$\\\\alpha n$</annotation>\\n </semantics></math> edges. In this paper, we study the problem of what 3-graphs <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> satisfy <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mi>co</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\pi _{\\\\mathrm{co}}(F)=0$</annotation>\\n </semantics></math>. We find that this is closely related to the uniform Turán density <span></span><math></math>, which is the supremum over all <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math> such that there are infinitely many <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>-free <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-graphs <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> satisfying that any induced linear-size subhypergraph of <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> has edge density at least <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>. We prove that, for every 3-graph <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mi>co</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\pi _{\\\\mathrm{co}}(F)=0$</annotation>\\n </semantics></math> implies <span></span><math></math>. We also introduce a layered structure for 3-graphs which allows us to obtain the reverse implication: Every layered 3-graph <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> with <span></span><math></math> satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mi>co</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\pi _{\\\\mathrm{co}}(F)=0$</annotation>\\n </semantics></math>. Along the way, we answer in the negative a question of Falgas-Ravry, Pikhurko, Vaughan, and Volec [J. Lond. Math. Soc. (2) <b>107</b> (2023), 1660–1691] about whether <span></span><math></math> always holds. In particular, we construct counterexamples <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> with positive but arbitrarily small <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>π</mi>\\n <mi>co</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\pi _{\\\\mathrm{co}}(F)$</annotation>\\n </semantics></math> while having <span></span><math></math>. Our proof relies on a random geometric construction, graph distributions, Ramsey's theorem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán density due to Reiher, Rödl, and Schacht [J. Lond. Math. Soc. <b>97</b> (2018), no. 1, 77–97].</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70281\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
For a -uniform hypergraph (or simply -graph) , the codegree Turán density is the supremum over all such that there exist arbitrarily large -vertex -free -graphs in which every -subset of is contained in at least edges. In this paper, we study the problem of what 3-graphs satisfy . We find that this is closely related to the uniform Turán density , which is the supremum over all such that there are infinitely many -free -graphs satisfying that any induced linear-size subhypergraph of has edge density at least . We prove that, for every 3-graph , implies . We also introduce a layered structure for 3-graphs which allows us to obtain the reverse implication: Every layered 3-graph with satisfies . Along the way, we answer in the negative a question of Falgas-Ravry, Pikhurko, Vaughan, and Volec [J. Lond. Math. Soc. (2) 107 (2023), 1660–1691] about whether always holds. In particular, we construct counterexamples with positive but arbitrarily small while having . Our proof relies on a random geometric construction, graph distributions, Ramsey's theorem and a new formulation of the characterization of 3-graphs with vanishing uniform Turán density due to Reiher, Rödl, and Schacht [J. Lond. Math. Soc. 97 (2018), no. 1, 77–97].
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.