Interactions between universal composition operators and complex dynamics

IF 1.2 2区 数学 Q1 MATHEMATICS
Vasiliki Evdoridou, Clifford Gilmore, Myrto Manolaki
{"title":"Interactions between universal composition operators and complex dynamics","authors":"Vasiliki Evdoridou,&nbsp;Clifford Gilmore,&nbsp;Myrto Manolaki","doi":"10.1112/jlms.70262","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with universality properties of composition operators <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>f</mi>\n </msub>\n <annotation>$C_f$</annotation>\n </semantics></math>, where the symbol <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is given by a transcendental entire function restricted to parts of its Fatou set. We determine universality of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>f</mi>\n </msub>\n <annotation>$C_f$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is restricted to (subsets of) Baker and wandering domains. We then describe the behaviour of universal vectors, under the action of iterates of the symbol <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>, near periodic points of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> or near infinity. Finally, we establish a principal universality theorem for the more general class of weighted composition operators, which we then apply to uncover universality results in the context of various types of Fatou components of the associated symbol.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70262","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70262","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with universality properties of composition operators C f $C_f$ , where the symbol f $f$ is given by a transcendental entire function restricted to parts of its Fatou set. We determine universality of C f $C_f$ when f $f$ is restricted to (subsets of) Baker and wandering domains. We then describe the behaviour of universal vectors, under the action of iterates of the symbol f $f$ , near periodic points of f $f$ or near infinity. Finally, we establish a principal universality theorem for the more general class of weighted composition operators, which we then apply to uncover universality results in the context of various types of Fatou components of the associated symbol.

Abstract Image

Abstract Image

Abstract Image

通用复合算子与复杂动力学之间的相互作用
本文研究复合算子C f$ C_f$的通配性,其中符号f$ f$是由一个局限于其法头集合部分的超越整函数给出的。当f$ f$局限于贝克域和游荡域的子集时,我们确定了C $f$ C_f$的通用性。然后,我们描述了泛向量在符号f$ f$的迭代作用下,在f$ f$的周期点附近或在无穷附近的行为。最后,我们为更一般的加权复合算子类建立了一个主要的普适定理,然后我们应用它来揭示关联符号的各种类型的法头分量的普适结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信