Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Compact and finite-type support in the homology of big mapping class groups 大映射类群同调中的紧和有限型支持
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-28 DOI: 10.1112/jlms.70258
Martin Palmer, Xiaolei Wu
{"title":"Compact and finite-type support in the homology of big mapping class groups","authors":"Martin Palmer,&nbsp;Xiaolei Wu","doi":"10.1112/jlms.70258","DOIUrl":"10.1112/jlms.70258","url":null,"abstract":"<p>For any infinite-type surface <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>, a natural question is whether the homology of its mapping class group contains any non-trivial classes that are supported on (i) a <i>compact</i> subsurface; or (ii) a <i>finite-type</i> subsurface. Our purpose here is to study this question, in particular giving an almost-complete answer when the genus of <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is positive (including infinite) and a partial answer when the genus of <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is zero. Our methods involve the notion of <i>shiftable subsurfaces</i> as well as homological stability for mapping class groups of finite-type surfaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stable radical of the module category for special biserial algebras 特殊双列代数模范畴的稳定根
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-28 DOI: 10.1112/jlms.70275
Suyash Srivastava, Vinit Sinha, Amit Kuber
{"title":"On the stable radical of the module category for special biserial algebras","authors":"Suyash Srivastava,&nbsp;Vinit Sinha,&nbsp;Amit Kuber","doi":"10.1112/jlms.70275","DOIUrl":"10.1112/jlms.70275","url":null,"abstract":"&lt;p&gt;Suppose that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a special biserial algebra over an algebraically closed field. Schröer showed that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is domestic, then the radical of the category of finitely generated (left) &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-modules is nilpotent, and the least ordinal, denoted as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;st&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathrm{st}(Lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where the decreasing sequence of powers of the radical stabilizes satisfies &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;st&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathrm{st}(Lambda)&lt;omega ^2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. With Gupta and Sardar, the third author conjectured that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has at least one band, then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 &lt;mi&gt;st&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$omega leqslant mathrm{st}(Lambda)&lt;omega ^2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; even when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Lambda$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;st&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathrm{st}(Lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; up to a ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounded ideal triangulations of infinite Riemann surfaces 无限黎曼曲面的有界理想三角
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-26 DOI: 10.1112/jlms.70276
Dragomir Šarić, Casey Whitney
{"title":"Bounded ideal triangulations of infinite Riemann surfaces","authors":"Dragomir Šarić,&nbsp;Casey Whitney","doi":"10.1112/jlms.70276","DOIUrl":"10.1112/jlms.70276","url":null,"abstract":"<p>We introduce a notion of a bounded ideal triangulation of an infinite Riemann surface and parameterize Teichmüller spaces of infinite surfaces which allow bounded triangulations. We prove that our parameterization is real-analytic. Riemann surfaces with bounded geometry and countably many punctures belong to the class of surfaces with bounded ideal triangulations. In comparison, the Fenchel–Nielsen parameterization for surfaces with bounded geometry is not known, while the Fenchel–Nielsen parameterization for surfaces with bounded pants decompositions is known as a homeomorphism but it is not known whether it is real-analytic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144897507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of shifts, interpolation, and spectrum of atomic measures 位移的稳定性,插值,和光谱的原子措施
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-26 DOI: 10.1112/jlms.70267
Alexander Ulanovskii, Ilya Zlotnikov
{"title":"Stability of shifts, interpolation, and spectrum of atomic measures","authors":"Alexander Ulanovskii,&nbsp;Ilya Zlotnikov","doi":"10.1112/jlms.70267","DOIUrl":"10.1112/jlms.70267","url":null,"abstract":"<p>We ask which functions <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> and separated sets <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> have the property that the <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>-shifts of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> form an unconditional basis in the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^p({mathbb {R}})$</annotation>\u0000 </semantics></math>-closure of their span for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mo>[</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$pin [1,infty]$</annotation>\u0000 </semantics></math>. The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> and sets <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>. In particular, we show the connection between the property and the nonexistence of certain crystalline measures.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144897506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp bounds for rainbow matchings in hypergraphs 超图中彩虹匹配的锐利界
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-24 DOI: 10.1112/jlms.70252
Cosmin Pohoata, Lisa Sauermann, Dmitrii Zakharov
{"title":"Sharp bounds for rainbow matchings in hypergraphs","authors":"Cosmin Pohoata,&nbsp;Lisa Sauermann,&nbsp;Dmitrii Zakharov","doi":"10.1112/jlms.70252","DOIUrl":"10.1112/jlms.70252","url":null,"abstract":"&lt;p&gt;Suppose that we are given matchings &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mtext&gt;…&lt;/mtext&gt;\u0000 &lt;mo&gt;.&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$M_1,ldots.,M_N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of size &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;annotation&gt;$t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in some &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-uniform hypergraph, and let us think of each matching having a different color. How large does &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; need to be (in terms of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;annotation&gt;$t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) such that we can always find a rainbow matching of size &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;annotation&gt;$t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;? This problem was first introduced by Aharoni and Berger, and has since been studied by several different authors. For example, Alon discovered an intriguing connection with the Erdős–Ginzburg–Ziv problem from additive combinatorics, which implies certain lower bounds for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For any fixed uniformity &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$r geqslant 3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, we answer this problem up to constant factors depending on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, showing that the answer is on the order of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$t^{r}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Furthermore, for any fixed &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;annotation&gt;$t$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144894146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lower p $p$ -series of analytic pro- p $p$ groups and Hausdorff dimension 解析前p$ p$群的下p$ p$ -级数与Hausdorff维数
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-24 DOI: 10.1112/jlms.70271
Iker de las Heras, Benjamin Klopsch, Anitha Thillaisundaram
{"title":"The lower \u0000 \u0000 p\u0000 $p$\u0000 -series of analytic pro-\u0000 \u0000 p\u0000 $p$\u0000 groups and Hausdorff dimension","authors":"Iker de las Heras,&nbsp;Benjamin Klopsch,&nbsp;Anitha Thillaisundaram","doi":"10.1112/jlms.70271","DOIUrl":"10.1112/jlms.70271","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-adic analytic pro-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; group of dimension &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, with lower &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-series &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {L} colon P_i(G), ,i in mathbb {N}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We produce an approximate series which descends regularly in strata and whose terms deviate from &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$P_i(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in a uniformly bounded way. This brings to light a new set of rational invariants &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mtext&gt;…&lt;/mtext&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ξ&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mstyle&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mstyle&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70271","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144894142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal gradients: Fundamental theorem of calculus, Poincaré inequalities, and embeddings 非局部梯度:微积分基本定理,庞加莱不等式,和嵌入
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-22 DOI: 10.1112/jlms.70277
José Carlos Bellido, Carlos Mora-Corral, Hidde Schönberger
{"title":"Nonlocal gradients: Fundamental theorem of calculus, Poincaré inequalities, and embeddings","authors":"José Carlos Bellido,&nbsp;Carlos Mora-Corral,&nbsp;Hidde Schönberger","doi":"10.1112/jlms.70277","DOIUrl":"10.1112/jlms.70277","url":null,"abstract":"<p>We address the study of nonlocal gradients defined through general radial kernels <span></span><math>\u0000 <semantics>\u0000 <mi>ρ</mi>\u0000 <annotation>$rho$</annotation>\u0000 </semantics></math>. Our investigation focuses on the properties of the associated function spaces, which depend on the characteristics of the kernel function. Specifically, even with minimal assumptions on <span></span><math>\u0000 <semantics>\u0000 <mi>ρ</mi>\u0000 <annotation>$rho$</annotation>\u0000 </semantics></math>, we establish Poincaré inequalities and compact embeddings into Lebesgue spaces. Additionally, we present a fundamental theorem of calculus that enables us to recover a function from its nonlocal gradient through a convolution. This is used to demonstrate embeddings into Orlicz spaces and spaces of continuous functions that mirror the well-known Sobolev and Morrey inequalities for classical gradients. Finally, we establish conditions for inclusions and equality of spaces associated to different kernels.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144891759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-similar instability and forced nonuniqueness: An application to the 2D euler equations 自相似不稳定性和强迫非唯一性:在二维欧拉方程中的应用
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-21 DOI: 10.1112/jlms.70274
Michele Dolce, Giulia Mescolini
{"title":"Self-similar instability and forced nonuniqueness: An application to the 2D euler equations","authors":"Michele Dolce,&nbsp;Giulia Mescolini","doi":"10.1112/jlms.70274","DOIUrl":"10.1112/jlms.70274","url":null,"abstract":"<p>Building on an approach introduced by Golovkin in the ’60s, we show that nonuniqueness in some forced partial differential equations is a direct consequence of the existence of a self-similar linearly unstable eigenvalue: the key point is a clever choice of the forcing term removing complicated nonlinear interactions. We use this method to give a short and self-contained proof of nonuniqueness in 2D perfect fluids, first obtained in Vishik's groundbreaking result. In particular, we present a direct construction of a forced self-similar unstable vortex, where we treat perturbatively the self-similar operator in a new and more quantitative way.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144881090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local spectral theory for subordinated operators: The Cesàro operator and beyond 从属算子的局部谱理论:Cesàro算子及以后
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-20 DOI: 10.1112/jlms.70273
Eva A. Gallardo-Gutiérrez, F. Javier González-Doña
{"title":"Local spectral theory for subordinated operators: The Cesàro operator and beyond","authors":"Eva A. Gallardo-Gutiérrez,&nbsp;F. Javier González-Doña","doi":"10.1112/jlms.70273","DOIUrl":"10.1112/jlms.70273","url":null,"abstract":"<p>We study local spectral properties for subordinated operators arising from <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$C_0$</annotation>\u0000 </semantics></math>-semigroups. Specifically, if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>t</mi>\u0000 <mo>⩾</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$mathcal {T}=(T_t)_{tgeqslant 0}$</annotation>\u0000 </semantics></math> is a <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$C_0$</annotation>\u0000 </semantics></math>-semigroup acting boundedly on a complex Banach space and\u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70273","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequences suffice for pointfree uniform completions 序列足以满足无点均匀补全
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-19 DOI: 10.1112/jlms.70272
Graham Manuell
{"title":"Sequences suffice for pointfree uniform completions","authors":"Graham Manuell","doi":"10.1112/jlms.70272","DOIUrl":"10.1112/jlms.70272","url":null,"abstract":"<p>Completions of metric spaces are usually constructed using Cauchy sequences. However, this does not work for general uniform spaces, where Cauchy filters or nets must be used instead. The situation in pointfree topology is more straightforward: the correct completion of uniform locales can indeed be obtained as a quotient of a locale of Cauchy sequences.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70272","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信