{"title":"Effective generic freeness and applications to local cohomology","authors":"Yairon Cid-Ruiz, Ilya Smirnov","doi":"10.1112/jlms.12995","DOIUrl":"https://doi.org/10.1112/jlms.12995","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> be a Noetherian domain and <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> be a finitely generated <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>-algebra. We study several features regarding the generic freeness over <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> of an <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math>-module. For an ideal <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>I</mi>\u0000 <mo>⊂</mo>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$I subset R$</annotation>\u0000 </semantics></math>, we show that the local cohomology modules <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mi>I</mi>\u0000 <mi>i</mi>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$normalfont text{H}_I^i(R)$</annotation>\u0000 </semantics></math> are generically free over <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> under certain settings where <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> is a smooth <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>-algebra. By utilizing the theory of Gröbner bases over arbitrary Noetherian rings, we provide an effective method to b make explicit the generic freeness over <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> of a finitely generated <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math>-module.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time-periodic solutions to heated ferrofluid flow models","authors":"Kamel Hamdache, Djamila Hamroun, Basma Jaffal-Mourtada","doi":"10.1112/jlms.12990","DOIUrl":"https://doi.org/10.1112/jlms.12990","url":null,"abstract":"<p>In this work, we prove the existence of time-periodic solutions to a model describing a ferrofluid flow heated from below. Navier–Stokes equations satisfied by the fluid velocity are coupled to the temperature equation and the magnetostatic equation satisfied by the magnetic potential. The magnetization is assumed to be parallel to the magnetic field and is given by a nonlinear magnetization law generalizing the Langevin law. The proof is based on a semi-Galerkin approximation and regularization methods together with the fixed point method.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fullness of \u0000 \u0000 q\u0000 $q$\u0000 -Araki-Woods factors","authors":"Manish Kumar, Simeng Wang","doi":"10.1112/jlms.12989","DOIUrl":"https://doi.org/10.1112/jlms.12989","url":null,"abstract":"<p>The <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math>-Araki-Woods factor associated to a group of orthogonal transformations on a real separable Hilbert space <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>R</mi>\u0000 </msub>\u0000 <annotation>$mathsf {H}_{mathbb {R}}$</annotation>\u0000 </semantics></math> is full as soon as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>dim</mo>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mi>R</mi>\u0000 </msub>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$dim mathsf {H}_{mathbb {R}}geqslant 2$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}