{"title":"Compact and finite-type support in the homology of big mapping class groups","authors":"Martin Palmer, Xiaolei Wu","doi":"10.1112/jlms.70258","DOIUrl":"10.1112/jlms.70258","url":null,"abstract":"<p>For any infinite-type surface <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>, a natural question is whether the homology of its mapping class group contains any non-trivial classes that are supported on (i) a <i>compact</i> subsurface; or (ii) a <i>finite-type</i> subsurface. Our purpose here is to study this question, in particular giving an almost-complete answer when the genus of <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is positive (including infinite) and a partial answer when the genus of <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is zero. Our methods involve the notion of <i>shiftable subsurfaces</i> as well as homological stability for mapping class groups of finite-type surfaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the stable radical of the module category for special biserial algebras","authors":"Suyash Srivastava, Vinit Sinha, Amit Kuber","doi":"10.1112/jlms.70275","DOIUrl":"10.1112/jlms.70275","url":null,"abstract":"<p>Suppose that <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> is a special biserial algebra over an algebraically closed field. Schröer showed that if <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> is domestic, then the radical of the category of finitely generated (left) <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math>-modules is nilpotent, and the least ordinal, denoted as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>st</mi>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{st}(Lambda)$</annotation>\u0000 </semantics></math>, where the decreasing sequence of powers of the radical stabilizes satisfies <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>st</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo><</mo>\u0000 <msup>\u0000 <mi>ω</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathrm{st}(Lambda)<omega ^2$</annotation>\u0000 </semantics></math>. With Gupta and Sardar, the third author conjectured that if <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> has at least one band, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ω</mi>\u0000 <mo>⩽</mo>\u0000 <mi>st</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo><</mo>\u0000 <msup>\u0000 <mi>ω</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$omega leqslant mathrm{st}(Lambda)<omega ^2$</annotation>\u0000 </semantics></math> even when <span></span><math>\u0000 <semantics>\u0000 <mi>Λ</mi>\u0000 <annotation>$Lambda$</annotation>\u0000 </semantics></math> is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>st</mi>\u0000 <mo>(</mo>\u0000 <mi>Λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{st}(Lambda)$</annotation>\u0000 </semantics></math> up to a ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounded ideal triangulations of infinite Riemann surfaces","authors":"Dragomir Šarić, Casey Whitney","doi":"10.1112/jlms.70276","DOIUrl":"10.1112/jlms.70276","url":null,"abstract":"<p>We introduce a notion of a bounded ideal triangulation of an infinite Riemann surface and parameterize Teichmüller spaces of infinite surfaces which allow bounded triangulations. We prove that our parameterization is real-analytic. Riemann surfaces with bounded geometry and countably many punctures belong to the class of surfaces with bounded ideal triangulations. In comparison, the Fenchel–Nielsen parameterization for surfaces with bounded geometry is not known, while the Fenchel–Nielsen parameterization for surfaces with bounded pants decompositions is known as a homeomorphism but it is not known whether it is real-analytic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144897507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability of shifts, interpolation, and spectrum of atomic measures","authors":"Alexander Ulanovskii, Ilya Zlotnikov","doi":"10.1112/jlms.70267","DOIUrl":"10.1112/jlms.70267","url":null,"abstract":"<p>We ask which functions <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> and separated sets <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> have the property that the <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>-shifts of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> form an unconditional basis in the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^p({mathbb {R}})$</annotation>\u0000 </semantics></math>-closure of their span for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mo>[</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$pin [1,infty]$</annotation>\u0000 </semantics></math>. The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math> is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$mathcal {G}$</annotation>\u0000 </semantics></math> and sets <span></span><math>\u0000 <semantics>\u0000 <mi>Γ</mi>\u0000 <annotation>$Gamma$</annotation>\u0000 </semantics></math>. In particular, we show the connection between the property and the nonexistence of certain crystalline measures.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70267","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144897506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp bounds for rainbow matchings in hypergraphs","authors":"Cosmin Pohoata, Lisa Sauermann, Dmitrii Zakharov","doi":"10.1112/jlms.70252","DOIUrl":"10.1112/jlms.70252","url":null,"abstract":"<p>Suppose that we are given matchings <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>.</mo>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$M_1,ldots.,M_N$</annotation>\u0000 </semantics></math> of size <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math> in some <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>-uniform hypergraph, and let us think of each matching having a different color. How large does <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> need to be (in terms of <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>) such that we can always find a rainbow matching of size <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math>? This problem was first introduced by Aharoni and Berger, and has since been studied by several different authors. For example, Alon discovered an intriguing connection with the Erdős–Ginzburg–Ziv problem from additive combinatorics, which implies certain lower bounds for <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>. For any fixed uniformity <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$r geqslant 3$</annotation>\u0000 </semantics></math>, we answer this problem up to constant factors depending on <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>, showing that the answer is on the order of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>t</mi>\u0000 <mi>r</mi>\u0000 </msup>\u0000 <annotation>$t^{r}$</annotation>\u0000 </semantics></math>. Furthermore, for any fixed <span></span><math>\u0000 <semantics>\u0000 <mi>t</mi>\u0000 <annotation>$t$</annotation>\u0000 </semantics></math> ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144894146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}