Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Fully noncentral Lie ideals and invariant additive subgroups in rings 环上的完全非中心李理想和不变加性子群
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-18 DOI: 10.1112/jlms.70127
Eusebio Gardella, Tsiu-Kwen Lee, Hannes Thiel
{"title":"Fully noncentral Lie ideals and invariant additive subgroups in rings","authors":"Eusebio Gardella,&nbsp;Tsiu-Kwen Lee,&nbsp;Hannes Thiel","doi":"10.1112/jlms.70127","DOIUrl":"https://doi.org/10.1112/jlms.70127","url":null,"abstract":"<p>We prove conditions ensuring that a Lie ideal or an invariant additive subgroup in a ring contains all additive commutators. A crucial assumption is that the subgroup is fully noncentral, that is, its image in every quotient is noncentral. For a unital algebra over a field of characteristic <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>≠</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$ne 2$</annotation>\u0000 </semantics></math> where every additive commutator is a sum of square-zero elements, we show that a fully noncentral subspace is a Lie ideal if and only if it is invariant under all inner automorphisms. This applies in particular to zero-product balanced algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvability and uniqueness of solution of generalized ★ $star$ -Sylvester equations with arbitrary coefficients 任意系数广义★$star$ -Sylvester方程解的可解性和唯一性
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-18 DOI: 10.1112/jlms.70129
Fernando De Terán, Bruno Iannazzo
{"title":"Solvability and uniqueness of solution of generalized \u0000 \u0000 ★\u0000 $star$\u0000 -Sylvester equations with arbitrary coefficients","authors":"Fernando De Terán,&nbsp;Bruno Iannazzo","doi":"10.1112/jlms.70129","DOIUrl":"https://doi.org/10.1112/jlms.70129","url":null,"abstract":"&lt;p&gt;We analyze the consistency and uniqueness of solution of the generalized &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;★&lt;/mi&gt;\u0000 &lt;annotation&gt;$star$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-Sylvester equation &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mi&gt;★&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$AXB+CX^star D=E$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A,B,C, D$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;annotation&gt;$E$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; being complex matrices (and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;★&lt;/mi&gt;\u0000 &lt;annotation&gt;$star$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; being either the transpose or the conjugate transpose). In particular, we obtain characterizations for the equation to have at most one solution and to be consistent for any right-hand side. Such characterizations are given in terms of spectral properties of the matrix pencils &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mtable&gt;\u0000 &lt;mtr&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mi&gt;★&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;mtd&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;★&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;/mtr&gt;\u0000 &lt;mtr&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;/mtr&gt;\u0000 &lt;/mtable&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;annotation&gt;$left[begin{smallmatrix}lambda D^star &amp; B^star A &amp; lambda Cend{smallmatrix}right]$&lt;/annota","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shift orbits for elementary representations of Kronecker quivers 克罗内克颤的初等表示的移位轨道
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-11 DOI: 10.1112/jlms.70122
Daniel Bissinger
{"title":"Shift orbits for elementary representations of Kronecker quivers","authors":"Daniel Bissinger","doi":"10.1112/jlms.70122","DOIUrl":"https://doi.org/10.1112/jlms.70122","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$r in mathbb {N}_{geqslant 3}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. We denote by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$K_r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; the wild &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-Kronecker quiver with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; arrows &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$gamma _i colon 1 longrightarrow 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and consider the action of the group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 &lt;mo&gt;Aut&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G_r subseteq operatorname{Aut}(mathbb {Z}^2)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; generated by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;y&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational stabilization of degenerate p $p$ -elasticae 简并p$ p$ -弹性模型的变分稳定性
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-11 DOI: 10.1112/jlms.70096
Tatsuya Miura, Kensuke Yoshizawa
{"title":"Variational stabilization of degenerate \u0000 \u0000 p\u0000 $p$\u0000 -elasticae","authors":"Tatsuya Miura,&nbsp;Kensuke Yoshizawa","doi":"10.1112/jlms.70096","DOIUrl":"https://doi.org/10.1112/jlms.70096","url":null,"abstract":"<p>A new stabilization phenomenon induced by degenerate diffusion is discovered in the context of pinned planar <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-elasticae. It was known that in the nondegenerate regime <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$pin (1,2]$</annotation>\u0000 </semantics></math>, including the classical case of Euler's elastica, there are no local minimizers other than unique global minimizers. Here we prove that, in stark contrast, in the degenerate regime <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$pin (2,infty)$</annotation>\u0000 </semantics></math> there emerge uncountably many local minimizers with diverging energy.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size-Ramsey numbers of graphs with maximum degree three 最大度为3的图的大小拉姆齐数
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-11 DOI: 10.1112/jlms.70116
Nemanja Draganić, Kalina Petrova
{"title":"Size-Ramsey numbers of graphs with maximum degree three","authors":"Nemanja Draganić,&nbsp;Kalina Petrova","doi":"10.1112/jlms.70116","DOIUrl":"https://doi.org/10.1112/jlms.70116","url":null,"abstract":"&lt;p&gt;The size-Ramsey number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;̂&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$hat{r}(H)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the smallest number of edges a (host) graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; can have, such that for any red/blue colouring of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is a monochromatic copy of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Recently, Conlon, Nenadov and Trujić showed that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a graph on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; vertices and maximum degree three, then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;̂&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;8&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$hat{r}(H) = O(n^{8/5})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, improving upon the upper bound of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70116","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ergodic averages along sequences of slow growth 沿缓慢增长序列的遍历平均值
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-11 DOI: 10.1112/jlms.70124
Kaitlyn Loyd, Sovanlal Mondal
{"title":"Ergodic averages along sequences of slow growth","authors":"Kaitlyn Loyd,&nbsp;Sovanlal Mondal","doi":"10.1112/jlms.70124","DOIUrl":"https://doi.org/10.1112/jlms.70124","url":null,"abstract":"<p>We consider pointwise almost everywhere convergence of weighted ergodic averages along the sequence <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$ Omega (n)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$ Omega (n)$</annotation>\u0000 </semantics></math> denotes the number of prime factors of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$ n$</annotation>\u0000 </semantics></math> counted with multiplicities. It was previously shown that a pointwise ergodic theorem for <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$L^infty$</annotation>\u0000 </semantics></math> functions does not hold along <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$ Omega (n)$</annotation>\u0000 </semantics></math>. We classify the strength of this divergence by proving a double-logarithmic pointwise ergodic theorem for <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$L^1$</annotation>\u0000 </semantics></math> functions along <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$ Omega (n)$</annotation>\u0000 </semantics></math>. This contrasts the behavior of Khintchine-type averages, for which, under any weaker form of averaging, there exists a bounded measurable function for which almost everywhere convergence fails. Moreover, we show that certain perturbations of increasing subpolynomial sequences fail to satisfy a pointwise ergodic theorem, yielding natural new examples of such sequences.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70124","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Einstein metrics on aligned homogeneous spaces with two factors 有两个因子的对齐齐次空间上的爱因斯坦度量
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-10 DOI: 10.1112/jlms.70120
Jorge Lauret, Cynthia Will
{"title":"Einstein metrics on aligned homogeneous spaces with two factors","authors":"Jorge Lauret,&nbsp;Cynthia Will","doi":"10.1112/jlms.70120","DOIUrl":"https://doi.org/10.1112/jlms.70120","url":null,"abstract":"&lt;p&gt;Given two homogeneous spaces of the form &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G_1/K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G_2/K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$G_1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$G_2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are compact simple Lie groups, we study the existence problem for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$G_1times G_2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-invariant Einstein metrics on the homogeneous space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$M=G_1times G_2/K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For the large subclass &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {C}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and nonexistence pieces of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {C}$&lt;/annotation&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigidity of quantum algebras 量子代数的刚性
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-08 DOI: 10.1112/jlms.70118
Akaki Tikaradze
{"title":"Rigidity of quantum algebras","authors":"Akaki Tikaradze","doi":"10.1112/jlms.70118","DOIUrl":"https://doi.org/10.1112/jlms.70118","url":null,"abstract":"<p>Given an associative <span></span><math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$mathbb {C}$</annotation>\u0000 </semantics></math>-algebra <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math>, we call <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> strongly rigid if for any pair of finite subgroups of its automorphism groups <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 <mo>,</mo>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation>$G, H$</annotation>\u0000 </semantics></math>, such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mi>G</mi>\u0000 </msup>\u0000 <mo>≅</mo>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mi>H</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$A^Gcong A^H$</annotation>\u0000 </semantics></math>, then <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$H$</annotation>\u0000 </semantics></math> must be isomorphic. In this paper, we show that a large class of filtered quantizations are strongly rigid. We also solve the inverse Galois problem for a wide class of rational Cherednik algebras that includes all (simple) classical generalized Weyl algebras, and also for quantum tori. Finally, we show that the Picard group of an <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-dimensional quantum torus is isomorphic to the group of its outer automorphisms.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher order Lipschitz Sandwich theorems 高阶李普希茨三明治定理
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-07 DOI: 10.1112/jlms.70121
Terry Lyons, Andrew D. McLeod
{"title":"Higher order Lipschitz Sandwich theorems","authors":"Terry Lyons,&nbsp;Andrew D. McLeod","doi":"10.1112/jlms.70121","DOIUrl":"https://doi.org/10.1112/jlms.70121","url":null,"abstract":"&lt;p&gt;We investigate the consequence of two &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Lip&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${mathrm{Lip}}(gamma)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; functions, in the sense of Stein, being close throughout a subset of their domain. A particular consequence of our results is the following. Given &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$K_0 &gt; varepsilon &gt; 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mi&gt;η&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$gamma &gt; eta &gt; 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is a constant &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;η&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$delta = delta (gamma,eta,varepsilon,K_0) &gt; 0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for which the following is true. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Sigma subset {mathbb {R}}^d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be closed and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;Σ&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f, h: Sigma rightarrow {mathbb {R}}$&lt;/annotation&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on Fourier coefficients and global sup-norms for Siegel cusp forms of degree 2 2次Siegel尖形式的傅里叶系数界和全局上模
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-03-07 DOI: 10.1112/jlms.70119
Félicien Comtat, Jolanta Marzec-Ballesteros, Abhishek Saha
{"title":"Bounds on Fourier coefficients and global sup-norms for Siegel cusp forms of degree 2","authors":"Félicien Comtat,&nbsp;Jolanta Marzec-Ballesteros,&nbsp;Abhishek Saha","doi":"10.1112/jlms.70119","DOIUrl":"https://doi.org/10.1112/jlms.70119","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;annotation&gt;$F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$L^2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-normalized Siegel cusp form for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Sp&lt;/mi&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm Sp}_4({mathbb {Z}})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of weight &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that is a Hecke eigenform and not a Saito–Kurokawa lift. Assuming the generalized Riemann hypothesis, we prove that its Fourier coefficients satisfy the bound &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;≪&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mi&gt;π&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfrac&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信