Nonlocal gradients: Fundamental theorem of calculus, Poincaré inequalities, and embeddings

IF 1.2 2区 数学 Q1 MATHEMATICS
José Carlos Bellido, Carlos Mora-Corral, Hidde Schönberger
{"title":"Nonlocal gradients: Fundamental theorem of calculus, Poincaré inequalities, and embeddings","authors":"José Carlos Bellido,&nbsp;Carlos Mora-Corral,&nbsp;Hidde Schönberger","doi":"10.1112/jlms.70277","DOIUrl":null,"url":null,"abstract":"<p>We address the study of nonlocal gradients defined through general radial kernels <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>. Our investigation focuses on the properties of the associated function spaces, which depend on the characteristics of the kernel function. Specifically, even with minimal assumptions on <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math>, we establish Poincaré inequalities and compact embeddings into Lebesgue spaces. Additionally, we present a fundamental theorem of calculus that enables us to recover a function from its nonlocal gradient through a convolution. This is used to demonstrate embeddings into Orlicz spaces and spaces of continuous functions that mirror the well-known Sobolev and Morrey inequalities for classical gradients. Finally, we establish conditions for inclusions and equality of spaces associated to different kernels.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the study of nonlocal gradients defined through general radial kernels ρ $\rho$ . Our investigation focuses on the properties of the associated function spaces, which depend on the characteristics of the kernel function. Specifically, even with minimal assumptions on ρ $\rho$ , we establish Poincaré inequalities and compact embeddings into Lebesgue spaces. Additionally, we present a fundamental theorem of calculus that enables us to recover a function from its nonlocal gradient through a convolution. This is used to demonstrate embeddings into Orlicz spaces and spaces of continuous functions that mirror the well-known Sobolev and Morrey inequalities for classical gradients. Finally, we establish conditions for inclusions and equality of spaces associated to different kernels.

Abstract Image

Abstract Image

非局部梯度:微积分基本定理,庞加莱不等式,和嵌入
我们研究了由一般径向核ρ $\rho$定义的非局部梯度。我们的研究集中在相关函数空间的性质,这取决于核函数的特征。具体地说,即使在ρ $\rho$的最小假设下,我们也建立了勒贝格空间中的庞卡罗不等式和紧嵌入。此外,我们提出了微积分的一个基本定理,使我们能够通过卷积从其非局部梯度中恢复函数。这是用来演示嵌入到Orlicz空间和连续函数的空间,反映了著名的Sobolev和Morrey不等式的经典梯度。最后,我们建立了与不同核相关的空间的包含性和相等性的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信