特殊双列代数模范畴的稳定根

IF 1.2 2区 数学 Q1 MATHEMATICS
Suyash Srivastava, Vinit Sinha, Amit Kuber
{"title":"特殊双列代数模范畴的稳定根","authors":"Suyash Srivastava,&nbsp;Vinit Sinha,&nbsp;Amit Kuber","doi":"10.1112/jlms.70275","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is a special biserial algebra over an algebraically closed field. Schröer showed that if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is domestic, then the radical of the category of finitely generated (left) <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules is nilpotent, and the least ordinal, denoted as <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)$</annotation>\n </semantics></math>, where the decreasing sequence of powers of the radical stabilizes satisfies <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)&lt;\\omega ^2$</annotation>\n </semantics></math>. With Gupta and Sardar, the third author conjectured that if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> has at least one band, then <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>⩽</mo>\n <mi>st</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\omega \\leqslant \\mathrm{st}(\\Lambda)&lt;\\omega ^2$</annotation>\n </semantics></math> even when <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)$</annotation>\n </semantics></math> up to a finite error. We also show that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>⩽</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\omega \\leqslant \\alpha &lt;\\omega ^2$</annotation>\n </semantics></math>, there is a finite-dimensional tame representation-type algebra <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>α</mi>\n </mrow>\n <annotation>$\\mathrm{st}(\\Gamma)=\\alpha$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stable radical of the module category for special biserial algebras\",\"authors\":\"Suyash Srivastava,&nbsp;Vinit Sinha,&nbsp;Amit Kuber\",\"doi\":\"10.1112/jlms.70275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is a special biserial algebra over an algebraically closed field. Schröer showed that if <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is domestic, then the radical of the category of finitely generated (left) <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math>-modules is nilpotent, and the least ordinal, denoted as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>st</mi>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{st}(\\\\Lambda)$</annotation>\\n </semantics></math>, where the decreasing sequence of powers of the radical stabilizes satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>st</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathrm{st}(\\\\Lambda)&lt;\\\\omega ^2$</annotation>\\n </semantics></math>. With Gupta and Sardar, the third author conjectured that if <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> has at least one band, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mo>⩽</mo>\\n <mi>st</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\omega \\\\leqslant \\\\mathrm{st}(\\\\Lambda)&lt;\\\\omega ^2$</annotation>\\n </semantics></math> even when <span></span><math>\\n <semantics>\\n <mi>Λ</mi>\\n <annotation>$\\\\Lambda$</annotation>\\n </semantics></math> is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>st</mi>\\n <mo>(</mo>\\n <mi>Λ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{st}(\\\\Lambda)$</annotation>\\n </semantics></math> up to a finite error. We also show that for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ω</mi>\\n <mo>⩽</mo>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <msup>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\omega \\\\leqslant \\\\alpha &lt;\\\\omega ^2$</annotation>\\n </semantics></math>, there is a finite-dimensional tame representation-type algebra <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>st</mi>\\n <mo>(</mo>\\n <mi>Γ</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>α</mi>\\n </mrow>\\n <annotation>$\\\\mathrm{st}(\\\\Gamma)=\\\\alpha$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70275\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70275","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设Λ $\Lambda$是代数闭域上的一个特殊的双代数。Schröer表明,如果Λ $\Lambda$是国内的,那么有限生成(左)Λ $\Lambda$ -模块的范畴的根是幂零的,最小序数,表示为st (Λ) $\mathrm{st}(\Lambda)$,其中自由基稳定幂的递减序列满足st (Λ) &lt; ω 2 $\mathrm{st}(\Lambda)<\omega ^2$。与Gupta和Sardar一起,第三位作者推测,如果Λ $\Lambda$至少有一个波段,然后ω≤st (Λ) &lt; ω 2 $\omega \leqslant \mathrm{st}(\Lambda)<\omega ^2$,即使Λ $\Lambda$是非国内的。在本文中,我们肯定地解决了这个猜想。我们还描述了一种计算st (Λ) $\mathrm{st}(\Lambda)$到有限误差的算法。我们还证明了对于每个ω≤α &lt; ω 2 $\omega \leqslant \alpha <\omega ^2$,存在一个有限维驯服表示型代数Γ $\Gamma$,其中st (Γ) = α $\mathrm{st}(\Gamma)=\alpha$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the stable radical of the module category for special biserial algebras

On the stable radical of the module category for special biserial algebras

On the stable radical of the module category for special biserial algebras

Suppose that Λ $\Lambda$ is a special biserial algebra over an algebraically closed field. Schröer showed that if Λ $\Lambda$ is domestic, then the radical of the category of finitely generated (left) Λ $\Lambda$ -modules is nilpotent, and the least ordinal, denoted as st ( Λ ) $\mathrm{st}(\Lambda)$ , where the decreasing sequence of powers of the radical stabilizes satisfies st ( Λ ) < ω 2 $\mathrm{st}(\Lambda)<\omega ^2$ . With Gupta and Sardar, the third author conjectured that if Λ $\Lambda$ has at least one band, then ω st ( Λ ) < ω 2 $\omega \leqslant \mathrm{st}(\Lambda)<\omega ^2$ even when Λ $\Lambda$ is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute st ( Λ ) $\mathrm{st}(\Lambda)$ up to a finite error. We also show that for each ω α < ω 2 $\omega \leqslant \alpha <\omega ^2$ , there is a finite-dimensional tame representation-type algebra Γ $\Gamma$ with st ( Γ ) = α $\mathrm{st}(\Gamma)=\alpha$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信