{"title":"位移的稳定性,插值,和光谱的原子措施","authors":"Alexander Ulanovskii, Ilya Zlotnikov","doi":"10.1112/jlms.70267","DOIUrl":null,"url":null,"abstract":"<p>We ask which functions <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> and separated sets <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> have the property that the <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>-shifts of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> form an unconditional basis in the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p({\\mathbb {R}})$</annotation>\n </semantics></math>-closure of their span for every <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$p\\in [1,\\infty]$</annotation>\n </semantics></math>. The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> and sets <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. In particular, we show the connection between the property and the nonexistence of certain crystalline measures.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70267","citationCount":"0","resultStr":"{\"title\":\"Stability of shifts, interpolation, and spectrum of atomic measures\",\"authors\":\"Alexander Ulanovskii, Ilya Zlotnikov\",\"doi\":\"10.1112/jlms.70267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We ask which functions <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math> and separated sets <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> have the property that the <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math>-shifts of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math> form an unconditional basis in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p({\\\\mathbb {R}})$</annotation>\\n </semantics></math>-closure of their span for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$p\\\\in [1,\\\\infty]$</annotation>\\n </semantics></math>. The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math> is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$\\\\mathcal {G}$</annotation>\\n </semantics></math> and sets <span></span><math>\\n <semantics>\\n <mi>Γ</mi>\\n <annotation>$\\\\Gamma$</annotation>\\n </semantics></math>. In particular, we show the connection between the property and the nonexistence of certain crystalline measures.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70267\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70267\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70267","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability of shifts, interpolation, and spectrum of atomic measures
We ask which functions and separated sets have the property that the -shifts of form an unconditional basis in the -closure of their span for every . The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions and sets . In particular, we show the connection between the property and the nonexistence of certain crystalline measures.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.