Iker de las Heras, Benjamin Klopsch, Anitha Thillaisundaram
{"title":"The lower \n \n p\n $p$\n -series of analytic pro-\n \n p\n $p$\n groups and Hausdorff dimension","authors":"Iker de las Heras, Benjamin Klopsch, Anitha Thillaisundaram","doi":"10.1112/jlms.70271","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic analytic pro-<span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> group of dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>, with lower <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-series <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>:</mo>\n <msub>\n <mi>P</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mspace></mspace>\n <mi>i</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$\\mathcal {L} \\colon P_i(G), \\,i \\in \\mathbb {N}$</annotation>\n </semantics></math>. We produce an approximate series which descends regularly in strata and whose terms deviate from <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>P</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$P_i(G)$</annotation>\n </semantics></math> in a uniformly bounded way. This brings to light a new set of rational invariants <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ξ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>ξ</mi>\n <mi>d</mi>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mstyle>\n <mn>1</mn>\n </mstyle>\n <mo>/</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$\\xi _1, \\ldots, \\xi _d \\in [\\nicefrac {1}{d},1]$</annotation>\n </semantics></math>, canonically associated to <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, such that\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70271","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70271","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a -adic analytic pro- group of dimension , with lower -series . We produce an approximate series which descends regularly in strata and whose terms deviate from in a uniformly bounded way. This brings to light a new set of rational invariants , canonically associated to , such that
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.