Compact and finite-type support in the homology of big mapping class groups

IF 1.2 2区 数学 Q1 MATHEMATICS
Martin Palmer, Xiaolei Wu
{"title":"Compact and finite-type support in the homology of big mapping class groups","authors":"Martin Palmer,&nbsp;Xiaolei Wu","doi":"10.1112/jlms.70258","DOIUrl":null,"url":null,"abstract":"<p>For any infinite-type surface <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, a natural question is whether the homology of its mapping class group contains any non-trivial classes that are supported on (i) a <i>compact</i> subsurface; or (ii) a <i>finite-type</i> subsurface. Our purpose here is to study this question, in particular giving an almost-complete answer when the genus of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is positive (including infinite) and a partial answer when the genus of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is zero. Our methods involve the notion of <i>shiftable subsurfaces</i> as well as homological stability for mapping class groups of finite-type surfaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70258","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70258","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any infinite-type surface S $S$ , a natural question is whether the homology of its mapping class group contains any non-trivial classes that are supported on (i) a compact subsurface; or (ii) a finite-type subsurface. Our purpose here is to study this question, in particular giving an almost-complete answer when the genus of S $S$ is positive (including infinite) and a partial answer when the genus of S $S$ is zero. Our methods involve the notion of shiftable subsurfaces as well as homological stability for mapping class groups of finite-type surfaces.

Abstract Image

Abstract Image

Abstract Image

大映射类群同调中的紧和有限型支持
对于任意无限型曲面S$ S$,一个很自然的问题是:它的映射类群的同调是否包含在(i)紧次曲面上支持的非平凡类;或(ii)有限型地下。我们的目的是研究这个问题,特别是给出S$ S$的属为正(包括无穷)时的几乎完全答案和S$ S$的属为零时的部分答案。我们的方法涉及可移子曲面的概念以及有限型曲面映射类群的同调稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信