Stability of shifts, interpolation, and spectrum of atomic measures

IF 1.2 2区 数学 Q1 MATHEMATICS
Alexander Ulanovskii, Ilya Zlotnikov
{"title":"Stability of shifts, interpolation, and spectrum of atomic measures","authors":"Alexander Ulanovskii,&nbsp;Ilya Zlotnikov","doi":"10.1112/jlms.70267","DOIUrl":null,"url":null,"abstract":"<p>We ask which functions <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> and separated sets <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> have the property that the <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>-shifts of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> form an unconditional basis in the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p({\\mathbb {R}})$</annotation>\n </semantics></math>-closure of their span for every <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$p\\in [1,\\infty]$</annotation>\n </semantics></math>. The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math> and sets <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. In particular, we show the connection between the property and the nonexistence of certain crystalline measures.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70267","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We ask which functions G $\mathcal {G}$ and separated sets Γ $\Gamma$ have the property that the Γ $\Gamma$ -shifts of G $\mathcal {G}$ form an unconditional basis in the L p ( R ) $L^p({\mathbb {R}})$ -closure of their span for every p [ 1 , ] $p\in [1,\infty]$ . The main result establishes the equivalence of this property to each of the two seemingly unrelated conditions: Γ $\Gamma$ is a set of interpolation for certain Paley–Wiener spaces and the nonexistence of certain measures with given support and spectrum. As a consequence, we answer the question for wide classes of functions G $\mathcal {G}$ and sets Γ $\Gamma$ . In particular, we show the connection between the property and the nonexistence of certain crystalline measures.

Abstract Image

Abstract Image

位移的稳定性,插值,和光谱的原子措施
我们问哪些函数G $\mathcal {G}$和分离集Γ $\Gamma$具有这样的性质:G $\mathcal {G}$的Γ $\Gamma$ -移位在L p (R) $L^p({\mathbb {R}})$ -它们张成的闭包对于每一个p∈[1,[∞]$p\in [1,\infty]$。主要结果建立了这一性质对两个看似不相关的条件中的每一个的等价性:Γ $\Gamma$是特定的Paley-Wiener空间的一组插值和给定支持和谱的某些测度的不存在性。因此,我们回答了广义类函数G $\mathcal {G}$和集合Γ $\Gamma$的问题。我们特别指出了这种性质与某些结晶测度的不存在之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信