{"title":"Gradient catastrophes and an infinite hierarchy of Hölder cusp-singularities for 1D Euler","authors":"Isaac Neal, Steve Shkoller, Vlad Vicol","doi":"10.1112/jlms.70261","DOIUrl":"10.1112/jlms.70261","url":null,"abstract":"<p>We establish an infinite hierarchy of finite-time gradient catastrophes for smooth solutions of the 1D Euler equations of gas dynamics with nonconstant entropy. Specifically, for all integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 1$</annotation>\u0000 </semantics></math>, we prove that there exist classical solutions, emanating from smooth, compressive, and nonvacuous initial data, which form cusp-type gradient singularities in finite time, in which the gradient of the solution has precisely <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mfrac>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$C^{0,frac{1}{2n+1}}$</annotation>\u0000 </semantics></math> Hölder-regularity. We show that such Euler solutions are codimension-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(2n-2)$</annotation>\u0000 </semantics></math> stable in the Sobolev space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$W^{2n+2,infty }$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiplicative vertex algebras and quantum loop algebras","authors":"Henry Liu","doi":"10.1112/jlms.70270","DOIUrl":"10.1112/jlms.70270","url":null,"abstract":"<p>We define a multiplicative version of vertex coalgebras and show that various equivariant K-theoretic Hall algebras (KHAs) admit compatible multiplicative vertex coalgebra structures. In particular, this is true of Varagnolo–Vasserot's preprojective KHA, which is (conjecturally) isomorphic to positive halves of certain quantum loop algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative unique continuation property for solutions to a bi-Laplacian equation with a potential","authors":"Hairong Liu, Long Tian, Xiaoping Yang","doi":"10.1112/jlms.70265","DOIUrl":"10.1112/jlms.70265","url":null,"abstract":"<p>In this paper, we focus on the quantitative unique continuation property of solutions to\u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144861780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Dehn twist coefficient for big and small mapping class groups","authors":"Peter Feller, Diana Hubbard, Hannah Turner","doi":"10.1112/jlms.70251","DOIUrl":"10.1112/jlms.70251","url":null,"abstract":"<p>We study a quasimorphism, which we call the Dehn twist coefficient (DTC), from the mapping class group of a surface (with a chosen compact boundary component) that generalizes the well-studied fractional Dehn twist coefficient (FDTC) to surfaces of infinite type. Indeed, for surfaces of finite type, the DTC coincides with the FDTC. We provide a characterization of the DTC as the unique homogeneous quasimorphism satisfying certain positivity conditions. This characterization is new even for the classical finite-type case and requires minimal input beyond elementary topology. The FDTC has image contained in <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$mathbb {Q}$</annotation>\u0000 </semantics></math>. In contrast to this, we find that for some surfaces of infinite type the DTC has image all of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>. To see this, we provide a new construction of maps with irrational rotation behavior for some surfaces of infinite type with a countable space of ends or even just one end. In fact, we find that the DTC is the right tool to detect irrational rotation behavior, even for surfaces without boundary.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144861837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard Montgomery, Alp Müyesser, Alexey Pokrovskiy, Benny Sudakov
{"title":"Approximate path decompositions of regular graphs","authors":"Richard Montgomery, Alp Müyesser, Alexey Pokrovskiy, Benny Sudakov","doi":"10.1112/jlms.70269","DOIUrl":"10.1112/jlms.70269","url":null,"abstract":"<p>We show that the edges of any <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-regular graph can be almost decomposed into paths of length roughly <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>, giving an approximate solution to a problem of Kotzig from 1957. Along the way, we show that almost all of the vertices of a <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-regular graph can be partitioned into <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>/</mo>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$n/(d+1)$</annotation>\u0000 </semantics></math> paths, asymptotically confirming a conjecture of Magnant and Martin from 2009.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Classifying Stein's groups","authors":"Hiroki Matui","doi":"10.1112/jlms.70266","DOIUrl":"10.1112/jlms.70266","url":null,"abstract":"<p>In this paper, we provide a comprehensive classification of Stein's groups, which generalize the well-known Higman–Thompson groups. Stein's groups are defined as groups of piecewise linear bijections of an interval with finitely many breakpoints and slopes belonging to specified additive and multiplicative subgroups of the real numbers. Our main result establishes a classification theorem for these groups under the assumptions that the slope group is finitely generated and the additive group has rank at least 2. We achieve this by interpreting Stein's groups as topological full groups of ample groupoids. A central concept in our analysis is the notion of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$H^1$</annotation>\u0000 </semantics></math>-rigidity in the cohomology of groupoids. In the case where the rank of the additive group is 1, we adopt a different approach using attracting elements to impose strong constraints on the classification.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144814817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The genus 1 bridge number of satellite knots","authors":"Scott A. Taylor, Maggy Tomova","doi":"10.1112/jlms.70260","DOIUrl":"10.1112/jlms.70260","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> be a satellite knot, link, or spatial graph in a 3-manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> that is either <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>$S^3$</annotation>\u0000 </semantics></math> or a lens space. Let <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$mathfrak {b}_0$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>$mathfrak {b}_1$</annotation>\u0000 </semantics></math> denote genus 0 and genus 1 bridge number, respectively. Suppose that <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> has a companion knot <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> (necessarily not the unknot) and wrapping number <span></span><math>\u0000 <semantics>\u0000 <mi>ω</mi>\u0000 <annotation>$omega$</annotation>\u0000 </semantics></math> with respect to <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>. When <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math> is not a torus knot, we show that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>⩾</mo>\u0000 <mi>ω</mi>\u0000 <msub>\u0000 <mi>b</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>K</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathfrak {b}_1(T)geqslant omega mathfrak {b}_1(K)$</annotation>\u0000 </semantics></math>. There are previously known counterexamples if <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </seman","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144811276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the annihilator variety of a highest weight module for classical Lie algebras","authors":"Zhanqiang Bai, Jia-Jun Ma, Yutong Wang","doi":"10.1112/jlms.70256","DOIUrl":"10.1112/jlms.70256","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$mathfrak {g}$</annotation>\u0000 </semantics></math> be a classical complex simple Lie algebra, and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> be the irreducible highest weight module of <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$mathfrak {g}$</annotation>\u0000 </semantics></math> with the highest weight <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>−</mo>\u0000 <mi>ρ</mi>\u0000 </mrow>\u0000 <annotation>$lambda -rho$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>ρ</mi>\u0000 <annotation>$rho$</annotation>\u0000 </semantics></math> is half the sum of positive roots. The associated variety of the annihilator ideal of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> is known as the annihilator variety of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math>. It is established by Joseph that the annihilator variety of a highest weight module is the Zariski closure of a nilpotent orbit in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>g</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$mathfrak {g}^*$</annotation>\u0000 </semantics></math>. However, describing this nilpotent orbit for a given highest weight module <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>λ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$L(lambda)$</annotation>\u0000 </semantics></math> can be quite challenging. In this paper, we present some efficient algorithms based on the Robinson–Schensted insertion algorithm to compute these orbits for classical Lie algebras. Our formulae are given by introducing two algorithms, that is, bipartition algorithm and partition algorithm. To get a special or metaplectic special partition from a domino type partition, we define the H-algorithm based on the Robinso","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"K-stable Fano threefolds of rank 2 and degree 28","authors":"Joseph Malbon","doi":"10.1112/jlms.70259","DOIUrl":"10.1112/jlms.70259","url":null,"abstract":"<p>Moduli spaces of Fano varieties have historically been difficult to construct. However, recent work has shown that smooth K-polystable Fano varieties of fixed dimension and volume can be parametrised by a quasi-projective moduli space. In this paper, we prove that all smooth Fano threefolds with Picard rank 2 and degree 28 are K-polystable, except for some explicit cases which we describe.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker
{"title":"Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case","authors":"Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker","doi":"10.1112/jlms.70257","DOIUrl":"10.1112/jlms.70257","url":null,"abstract":"<p>We provide an explicit construction of the arboreal Galois group for the postcritically finite polynomial <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$f(z) = z^2 +c$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> belongs to some arbitrary field of characteristic not equal to 2. In this first of two papers, we consider the case that the critical point is periodic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}