{"title":"Euler characteristics of affine ADE Nakajima quiver varieties via collapsing fibres","authors":"Lukas Bertsch, Ádám Gyenge, Balázs Szendrői","doi":"10.1112/jlms.70074","DOIUrl":"https://doi.org/10.1112/jlms.70074","url":null,"abstract":"<p>We prove a universal substitution formula that compares generating series of Euler characteristics of Nakajima quiver varieties associated with affine ADE diagrams at generic and at certain non-generic stability conditions via a study of collapsing fibres in the associated variation of GIT map, unifying and generalising earlier results of the last two authors with Némethi and of Nakajima. As a special case, we compute generating series of Euler characteristics of non-commutative Quot schemes of Kleinian orbifolds. In type A and rank 1, we give a second, combinatorial proof of our substitution formula, using torus localisation and partition enumeration. This gives a combinatorial model of the fibres of the variation of GIT map, and also leads to relations between our results and the representation theory of the affine and finite Lie algebras in type A.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70074","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the real-rootedness of the Eulerian transformation","authors":"Christos A. Athanasiadis","doi":"10.1112/jlms.70083","DOIUrl":"https://doi.org/10.1112/jlms.70083","url":null,"abstract":"<p>The Eulerian transformation is the linear operator on polynomials in one variable with real coefficients that maps the powers of this variable to the corresponding Eulerian polynomials. The derangement transformation is defined similarly. Brändén and Jochemko have conjectured that the Eulerian transforms of a class of polynomials with nonnegative coefficients, which includes those having all their roots in the interval <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$[-1,0]$</annotation>\u0000 </semantics></math>, have only real zeros. This conjecture is proven in this paper. More general transformations are introduced in the combinatorial-geometric context of uniform triangulations of simplicial complexes, where Eulerian and derangement transformations arise in the special case of barycentric subdivision, and are shown to have strong unimodality and gamma-positivity properties. General real-rootedness conjectures for these transformations, which unify various results and conjectures in the literature, are also proposed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel D. Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk
{"title":"Criteria for extension of commutativity to fractional iterates of holomorphic self-maps in the unit disc","authors":"Manuel D. Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk","doi":"10.1112/jlms.70077","DOIUrl":"https://doi.org/10.1112/jlms.70077","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math> be a univalent non-elliptic self-map of the unit disc <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$mathbb {D}$</annotation>\u0000 </semantics></math> and let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(psi _{t})$</annotation>\u0000 </semantics></math> be a continuous one-parameter semigroup of holomorphic functions in <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$mathbb {D}$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>≠</mo>\u0000 <msub>\u0000 <mi>id</mi>\u0000 <mi>D</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$psi _{1}ne {sf id}_mathbb {D}$</annotation>\u0000 </semantics></math> commutes with <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math>. This assumption does not imply that all elements of the semigroup <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(psi _t)$</annotation>\u0000 </semantics></math> commute with <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math>. In this paper, we provide a number of sufficient conditions that guarantee that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mspace></mspace>\u0000 <mo>∘</mo>\u0000 <mspace></mspace>\u0000 <mi>φ</mi>\u0000 <mo>=</mo>\u0000 <mi>φ</mi>\u0000 <mspace></mspace>\u0000 <mo>∘</mo>\u0000 <mspace></mspace>\u0000 <msub>\u0000 <mi>ψ</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>${psi _t circ varphi =varphi circ psi _t}$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <se","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Action of \u0000 \u0000 W\u0000 $W$\u0000 -type operators on Schur functions and Schur Q-functions","authors":"Xiaobo Liu, Chenglang Yang","doi":"10.1112/jlms.70080","DOIUrl":"https://doi.org/10.1112/jlms.70080","url":null,"abstract":"<p>In this paper, we investigate a series of W-type differential operators, which appear naturally in the symmetry algebras of KP and BKP hierarchies. In particular, they include all operators in the W-constraints for tau-functions of higher KdV hierarchies that satisfy the string equation. We will give simple uniform formulas for actions of these operators on all ordinary Schur functions and Schur Q-functions. As applications of such formulas, we will give new simple proofs for Alexandrov's conjecture and Mironov–Morozov's formula, which express the Brézin–Gross–Witten and Kontsevich–Witten tau-functions as linear combinations of Q-functions with simple coefficients, respectively.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}