Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Gradient catastrophes and an infinite hierarchy of Hölder cusp-singularities for 1D Euler 一维欧拉的梯度突变和Hölder顶点奇点的无限层次
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-18 DOI: 10.1112/jlms.70261
Isaac Neal, Steve Shkoller, Vlad Vicol
{"title":"Gradient catastrophes and an infinite hierarchy of Hölder cusp-singularities for 1D Euler","authors":"Isaac Neal,&nbsp;Steve Shkoller,&nbsp;Vlad Vicol","doi":"10.1112/jlms.70261","DOIUrl":"10.1112/jlms.70261","url":null,"abstract":"<p>We establish an infinite hierarchy of finite-time gradient catastrophes for smooth solutions of the 1D Euler equations of gas dynamics with nonconstant entropy. Specifically, for all integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 1$</annotation>\u0000 </semantics></math>, we prove that there exist classical solutions, emanating from smooth, compressive, and nonvacuous initial data, which form cusp-type gradient singularities in finite time, in which the gradient of the solution has precisely <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </mfrac>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$C^{0,frac{1}{2n+1}}$</annotation>\u0000 </semantics></math> Hölder-regularity. We show that such Euler solutions are codimension-<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(2n-2)$</annotation>\u0000 </semantics></math> stable in the Sobolev space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$W^{2n+2,infty }$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicative vertex algebras and quantum loop algebras 乘法顶点代数和量子环代数
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-18 DOI: 10.1112/jlms.70270
Henry Liu
{"title":"Multiplicative vertex algebras and quantum loop algebras","authors":"Henry Liu","doi":"10.1112/jlms.70270","DOIUrl":"10.1112/jlms.70270","url":null,"abstract":"<p>We define a multiplicative version of vertex coalgebras and show that various equivariant K-theoretic Hall algebras (KHAs) admit compatible multiplicative vertex coalgebra structures. In particular, this is true of Varagnolo–Vasserot's preprojective KHA, which is (conjecturally) isomorphic to positive halves of certain quantum loop algebras.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative unique continuation property for solutions to a bi-Laplacian equation with a potential 具有势的双拉普拉斯方程解的定量唯一延拓性质
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-18 DOI: 10.1112/jlms.70265
Hairong Liu, Long Tian, Xiaoping Yang
{"title":"Quantitative unique continuation property for solutions to a bi-Laplacian equation with a potential","authors":"Hairong Liu,&nbsp;Long Tian,&nbsp;Xiaoping Yang","doi":"10.1112/jlms.70265","DOIUrl":"10.1112/jlms.70265","url":null,"abstract":"<p>In this paper, we focus on the quantitative unique continuation property of solutions to\u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144861780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dehn twist coefficient for big and small mapping class groups 大小映射类群的Dehn扭转系数
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-18 DOI: 10.1112/jlms.70251
Peter Feller, Diana Hubbard, Hannah Turner
{"title":"The Dehn twist coefficient for big and small mapping class groups","authors":"Peter Feller,&nbsp;Diana Hubbard,&nbsp;Hannah Turner","doi":"10.1112/jlms.70251","DOIUrl":"10.1112/jlms.70251","url":null,"abstract":"<p>We study a quasimorphism, which we call the Dehn twist coefficient (DTC), from the mapping class group of a surface (with a chosen compact boundary component) that generalizes the well-studied fractional Dehn twist coefficient (FDTC) to surfaces of infinite type. Indeed, for surfaces of finite type, the DTC coincides with the FDTC. We provide a characterization of the DTC as the unique homogeneous quasimorphism satisfying certain positivity conditions. This characterization is new even for the classical finite-type case and requires minimal input beyond elementary topology. The FDTC has image contained in <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$mathbb {Q}$</annotation>\u0000 </semantics></math>. In contrast to this, we find that for some surfaces of infinite type the DTC has image all of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>. To see this, we provide a new construction of maps with irrational rotation behavior for some surfaces of infinite type with a countable space of ends or even just one end. In fact, we find that the DTC is the right tool to detect irrational rotation behavior, even for surfaces without boundary.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144861837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate path decompositions of regular graphs 正则图的近似路径分解
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-18 DOI: 10.1112/jlms.70269
Richard Montgomery, Alp Müyesser, Alexey Pokrovskiy, Benny Sudakov
{"title":"Approximate path decompositions of regular graphs","authors":"Richard Montgomery,&nbsp;Alp Müyesser,&nbsp;Alexey Pokrovskiy,&nbsp;Benny Sudakov","doi":"10.1112/jlms.70269","DOIUrl":"10.1112/jlms.70269","url":null,"abstract":"<p>We show that the edges of any <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-regular graph can be almost decomposed into paths of length roughly <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>, giving an approximate solution to a problem of Kotzig from 1957. Along the way, we show that almost all of the vertices of a <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-regular graph can be partitioned into <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>/</mo>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$n/(d+1)$</annotation>\u0000 </semantics></math> paths, asymptotically confirming a conjecture of Magnant and Martin from 2009.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144869230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying Stein's groups 斯坦群的分类
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-12 DOI: 10.1112/jlms.70266
Hiroki Matui
{"title":"Classifying Stein's groups","authors":"Hiroki Matui","doi":"10.1112/jlms.70266","DOIUrl":"10.1112/jlms.70266","url":null,"abstract":"<p>In this paper, we provide a comprehensive classification of Stein's groups, which generalize the well-known Higman–Thompson groups. Stein's groups are defined as groups of piecewise linear bijections of an interval with finitely many breakpoints and slopes belonging to specified additive and multiplicative subgroups of the real numbers. Our main result establishes a classification theorem for these groups under the assumptions that the slope group is finitely generated and the additive group has rank at least 2. We achieve this by interpreting Stein's groups as topological full groups of ample groupoids. A central concept in our analysis is the notion of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$H^1$</annotation>\u0000 </semantics></math>-rigidity in the cohomology of groupoids. In the case where the rank of the additive group is 1, we adopt a different approach using attracting elements to impose strong constraints on the classification.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144814817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genus 1 bridge number of satellite knots 属1桥数卫星节
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-11 DOI: 10.1112/jlms.70260
Scott A. Taylor, Maggy Tomova
{"title":"The genus 1 bridge number of satellite knots","authors":"Scott A. Taylor,&nbsp;Maggy Tomova","doi":"10.1112/jlms.70260","DOIUrl":"10.1112/jlms.70260","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;annotation&gt;$T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a satellite knot, link, or spatial graph in a 3-manifold &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that is either &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$S^3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; or a lens space. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathfrak {b}_0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$mathfrak {b}_1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; denote genus 0 and genus 1 bridge number, respectively. Suppose that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;annotation&gt;$T$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has a companion knot &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (necessarily not the unknot) and wrapping number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;annotation&gt;$omega$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with respect to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. When &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is not a torus knot, we show that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;b&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathfrak {b}_1(T)geqslant omega mathfrak {b}_1(K)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. There are previously known counterexamples if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;K&lt;/mi&gt;\u0000 &lt;annotation&gt;$K$&lt;/annotation&gt;\u0000 &lt;/seman","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144811276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the annihilator variety of a highest weight module for classical Lie algebras 经典李代数最高权模的湮灭子变化
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-04 DOI: 10.1112/jlms.70256
Zhanqiang Bai, Jia-Jun Ma, Yutong Wang
{"title":"On the annihilator variety of a highest weight module for classical Lie algebras","authors":"Zhanqiang Bai,&nbsp;Jia-Jun Ma,&nbsp;Yutong Wang","doi":"10.1112/jlms.70256","DOIUrl":"10.1112/jlms.70256","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathfrak {g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a classical complex simple Lie algebra, and let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$L(lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the irreducible highest weight module of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathfrak {g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with the highest weight &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$lambda -rho$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;annotation&gt;$rho$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is half the sum of positive roots. The associated variety of the annihilator ideal of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$L(lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is known as the annihilator variety of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$L(lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. It is established by Joseph that the annihilator variety of a highest weight module is the Zariski closure of a nilpotent orbit in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mo&gt;∗&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$mathfrak {g}^*$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. However, describing this nilpotent orbit for a given highest weight module &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$L(lambda)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; can be quite challenging. In this paper, we present some efficient algorithms based on the Robinson–Schensted insertion algorithm to compute these orbits for classical Lie algebras. Our formulae are given by introducing two algorithms, that is, bipartition algorithm and partition algorithm. To get a special or metaplectic special partition from a domino type partition, we define the H-algorithm based on the Robinso","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K-stable Fano threefolds of rank 2 and degree 28 2阶28度的k -稳定Fano三倍
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-04 DOI: 10.1112/jlms.70259
Joseph Malbon
{"title":"K-stable Fano threefolds of rank 2 and degree 28","authors":"Joseph Malbon","doi":"10.1112/jlms.70259","DOIUrl":"10.1112/jlms.70259","url":null,"abstract":"<p>Moduli spaces of Fano varieties have historically been difficult to construct. However, recent work has shown that smooth K-polystable Fano varieties of fixed dimension and volume can be parametrised by a quasi-projective moduli space. In this paper, we prove that all smooth Fano threefolds with Picard rank 2 and degree 28 are K-polystable, except for some explicit cases which we describe.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144773685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case 后临界有限二次多项式的树伽罗瓦群:周期情况
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-08-02 DOI: 10.1112/jlms.70257
Robert L. Benedetto, Dragos Ghioca, Jamie Juul, Thomas J. Tucker
{"title":"Arboreal Galois groups of postcritically finite quadratic polynomials: The periodic case","authors":"Robert L. Benedetto,&nbsp;Dragos Ghioca,&nbsp;Jamie Juul,&nbsp;Thomas J. Tucker","doi":"10.1112/jlms.70257","DOIUrl":"10.1112/jlms.70257","url":null,"abstract":"<p>We provide an explicit construction of the arboreal Galois group for the postcritically finite polynomial <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>z</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>+</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 <annotation>$f(z) = z^2 +c$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>c</mi>\u0000 <annotation>$c$</annotation>\u0000 </semantics></math> belongs to some arbitrary field of characteristic not equal to 2. In this first of two papers, we consider the case that the critical point is periodic.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144764115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信