指数函数很少最大化圆锥函数的傅里叶扩展不等式

IF 1 2区 数学 Q1 MATHEMATICS
Giuseppe Negro, Diogo Oliveira e Silva, Betsy Stovall, James Tautges
{"title":"指数函数很少最大化圆锥函数的傅里叶扩展不等式","authors":"Giuseppe Negro,&nbsp;Diogo Oliveira e Silva,&nbsp;Betsy Stovall,&nbsp;James Tautges","doi":"10.1112/jlms.70112","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of maximizers and the precompactness of <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-normalized maximizing sequences modulo symmetries for all valid scale-invariant Fourier extension inequalities on the cone in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>d</mi>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R}^{1+d}$</annotation>\n </semantics></math>. In the range for which such inequalities are conjectural, our result is conditional on the boundedness of the extension operator. Global maximizers for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> Fourier extension inequality on the cone in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>d</mi>\n </mrow>\n </msup>\n <annotation>$\\mathbb {R}^{1+d}$</annotation>\n </semantics></math> have been characterized in the lowest dimensional cases <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$d\\in \\lbrace 2,3\\rbrace$</annotation>\n </semantics></math>. We further prove that these functions are critical points for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <annotation>$L^q$</annotation>\n </semantics></math> Fourier extension inequality if and only if <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p = 2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70112","citationCount":"0","resultStr":"{\"title\":\"Exponentials rarely maximize Fourier extension inequalities for cones\",\"authors\":\"Giuseppe Negro,&nbsp;Diogo Oliveira e Silva,&nbsp;Betsy Stovall,&nbsp;James Tautges\",\"doi\":\"10.1112/jlms.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of maximizers and the precompactness of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math>-normalized maximizing sequences modulo symmetries for all valid scale-invariant Fourier extension inequalities on the cone in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>d</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{1+d}$</annotation>\\n </semantics></math>. In the range for which such inequalities are conjectural, our result is conditional on the boundedness of the extension operator. Global maximizers for the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math> Fourier extension inequality on the cone in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>d</mi>\\n </mrow>\\n </msup>\\n <annotation>$\\\\mathbb {R}^{1+d}$</annotation>\\n </semantics></math> have been characterized in the lowest dimensional cases <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>∈</mo>\\n <mo>{</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$d\\\\in \\\\lbrace 2,3\\\\rbrace$</annotation>\\n </semantics></math>. We further prove that these functions are critical points for the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>q</mi>\\n </msup>\\n <annotation>$L^q$</annotation>\\n </semantics></math> Fourier extension inequality if and only if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p = 2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70112\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70112\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70112","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

证明了r1 + d中锥上所有有效的尺度不变傅里叶扩展不等式的L p$ L^p$ -归一化极大值序列模对称的极大量的存在性和预紧性$\mathbb {R}^{1+d}$。在这些不等式可以推测的范围内,我们的结果以扩展算子的有界性为条件。在R 1+d $\mathbb {R}^{1+d}$中,锥上l2 $L^2$傅里叶扩展不等式的全局极大值在最低维上得到了表征情况d∈{2,3}$d\in \rbrace 2,3\rbrace$。进一步证明了当且仅当p = 2时,这些函数是lp $L^p$到lq $L^q$傅里叶扩展不等式的临界点$p = 2$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponentials rarely maximize Fourier extension inequalities for cones

We prove the existence of maximizers and the precompactness of L p $L^p$ -normalized maximizing sequences modulo symmetries for all valid scale-invariant Fourier extension inequalities on the cone in R 1 + d $\mathbb {R}^{1+d}$ . In the range for which such inequalities are conjectural, our result is conditional on the boundedness of the extension operator. Global maximizers for the L 2 $L^2$ Fourier extension inequality on the cone in R 1 + d $\mathbb {R}^{1+d}$ have been characterized in the lowest dimensional cases d { 2 , 3 } $d\in \lbrace 2,3\rbrace$ . We further prove that these functions are critical points for the L p $L^p$ to L q $L^q$ Fourier extension inequality if and only if p = 2 $p = 2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信