紧凑字母的替换

IF 1 2区 数学 Q1 MATHEMATICS
Neil Mañibo, Dan Rust, James J. Walton
{"title":"紧凑字母的替换","authors":"Neil Mañibo,&nbsp;Dan Rust,&nbsp;James J. Walton","doi":"10.1112/jlms.70123","DOIUrl":null,"url":null,"abstract":"<p>We develop a systematic approach to continuous substitutions on compact Hausdorff alphabets. Focussing on implications of irreducibility and primitivity, we highlight important features of the topological dynamics of their (generalised) subshifts. We then reframe questions from ergodic theory in terms of spectral properties of a corresponding substitution operator. This requires an extension of standard Perron–Frobenius theory to the setting of Banach lattices. As an application, we identify computable criteria that guarantee quasi-compactness of the substitution operator. This allows unique ergodicity to be verified for several classes of examples. For instance, it follows that every primitive and constant length substitution on an alphabet with an isolated point is uniquely ergodic, a result which fails when there are no isolated points.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70123","citationCount":"0","resultStr":"{\"title\":\"Substitutions on compact alphabets\",\"authors\":\"Neil Mañibo,&nbsp;Dan Rust,&nbsp;James J. Walton\",\"doi\":\"10.1112/jlms.70123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop a systematic approach to continuous substitutions on compact Hausdorff alphabets. Focussing on implications of irreducibility and primitivity, we highlight important features of the topological dynamics of their (generalised) subshifts. We then reframe questions from ergodic theory in terms of spectral properties of a corresponding substitution operator. This requires an extension of standard Perron–Frobenius theory to the setting of Banach lattices. As an application, we identify computable criteria that guarantee quasi-compactness of the substitution operator. This allows unique ergodicity to be verified for several classes of examples. For instance, it follows that every primitive and constant length substitution on an alphabet with an isolated point is uniquely ergodic, a result which fails when there are no isolated points.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70123\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70123\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70123","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种系统的方法来连续替换紧Hausdorff字母。关注不可约性和原性的含义,我们强调了它们(广义)子位移的拓扑动力学的重要特征。然后,我们根据相应替换算子的谱性质从遍历理论重新构造问题。这需要将标准Perron-Frobenius理论推广到Banach格的设置。作为一个应用,我们确定了保证替换算子的拟紧性的可计算准则。这允许对几个类别的示例验证独特的遍历性。例如,在一个孤立点的字母表上,每个原始的和常数长度的替换都是唯一遍历的,当没有孤立点时,这个结果就失效了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substitutions on compact alphabets

We develop a systematic approach to continuous substitutions on compact Hausdorff alphabets. Focussing on implications of irreducibility and primitivity, we highlight important features of the topological dynamics of their (generalised) subshifts. We then reframe questions from ergodic theory in terms of spectral properties of a corresponding substitution operator. This requires an extension of standard Perron–Frobenius theory to the setting of Banach lattices. As an application, we identify computable criteria that guarantee quasi-compactness of the substitution operator. This allows unique ergodicity to be verified for several classes of examples. For instance, it follows that every primitive and constant length substitution on an alphabet with an isolated point is uniquely ergodic, a result which fails when there are no isolated points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信