Enriques曲面一点爆破的Kähler锥与辛锥的比较

IF 1 2区 数学 Q1 MATHEMATICS
Shengzhen Ning
{"title":"Enriques曲面一点爆破的Kähler锥与辛锥的比较","authors":"Shengzhen Ning","doi":"10.1112/jlms.70117","DOIUrl":null,"url":null,"abstract":"<p>We follow the study by Cascini–Panov on symplectic generic complex structures on Kähler surfaces with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mi>g</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$p_g=0$</annotation>\n </semantics></math>, a question proposed by Li, by demonstrating that the one-point blowup of an Enriques surface admits non-Kähler symplectic forms. This phenomenon relies on the abundance of elliptic fibrations on Enriques surfaces, characterized by various invariants from the algebraic geometry. We also provide a quantitative comparison of these invariants to further give a detailed examination of the distinction between Kähler cone and symplectic cone.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Kähler cone and symplectic cone of one-point blowup of Enriques surface\",\"authors\":\"Shengzhen Ning\",\"doi\":\"10.1112/jlms.70117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We follow the study by Cascini–Panov on symplectic generic complex structures on Kähler surfaces with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>p</mi>\\n <mi>g</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$p_g=0$</annotation>\\n </semantics></math>, a question proposed by Li, by demonstrating that the one-point blowup of an Enriques surface admits non-Kähler symplectic forms. This phenomenon relies on the abundance of elliptic fibrations on Enriques surfaces, characterized by various invariants from the algebraic geometry. We also provide a quantitative comparison of these invariants to further give a detailed examination of the distinction between Kähler cone and symplectic cone.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70117\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70117","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们继Cascini-Panov对p g=0$ p_g=0$ Kähler曲面上的辛一般复结构的研究(Li提出的问题)之后,证明了Enriques曲面的一点膨胀允许non-Kähler辛形式。这种现象依赖于恩里克曲面上大量的椭圆纤摇,其特征是代数几何中的各种不变量。我们还提供了这些不变量的定量比较,以进一步详细检查Kähler锥和辛锥之间的区别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Kähler cone and symplectic cone of one-point blowup of Enriques surface

We follow the study by Cascini–Panov on symplectic generic complex structures on Kähler surfaces with p g = 0 $p_g=0$ , a question proposed by Li, by demonstrating that the one-point blowup of an Enriques surface admits non-Kähler symplectic forms. This phenomenon relies on the abundance of elliptic fibrations on Enriques surfaces, characterized by various invariants from the algebraic geometry. We also provide a quantitative comparison of these invariants to further give a detailed examination of the distinction between Kähler cone and symplectic cone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信