Beurling ζ $\ ζ $函数的carlson型零密度定理

IF 1 2区 数学 Q1 MATHEMATICS
Szilárd Gy. Révész
{"title":"Beurling ζ $\\ ζ $函数的carlson型零密度定理","authors":"Szilárd Gy. Révész","doi":"10.1112/jlms.70110","DOIUrl":null,"url":null,"abstract":"<p>In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$m\\in {\\mathbb {N}}$</annotation>\n </semantics></math> (Condition G).</p><p>Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.</p><p>Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70110","citationCount":"0","resultStr":"{\"title\":\"The Carlson-type zero-density theorem for the Beurling \\n \\n ζ\\n $\\\\zeta$\\n function\",\"authors\":\"Szilárd Gy. Révész\",\"doi\":\"10.1112/jlms.70110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$m\\\\in {\\\\mathbb {N}}$</annotation>\\n </semantics></math> (Condition G).</p><p>Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.</p><p>Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70110\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在上一篇文章中,我们证明了满足Knopfmacher公理a的Beurling zeta函数在临界带上零点的一个carlson型密度定理。在这里,我们需要调用两个附加条件:在{\mathbb {N}}$ $(条件G)中计算相同范数m∈N $m\的不同Beurling整数的个数的算术函数的“平均Ramanujan条件”的完整性。在这里,我们使用经典的零检测和与Halász方法相结合的方法实现了一种新的Pintz方法。但在其他方面,以一种基本的方式争论,例如,避免大筛型不等式或狄利克雷多项式的均值估计。通过这种方式,我们给出了一个新的卡尔森型密度估计的证明-带有显式常数-避免了之前需要的两个附加条件的任何使用。因此,可以看出,carlson型密度估计的有效性不依赖于任何额外的假设——既不依赖于Selberg类的泛函方程,也不依赖于系数的增长估计,比如“平均ramanujan型”——而是一个普遍的性质,只要解析延延得到公理a的保证,它就会出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Carlson-type zero-density theorem for the Beurling ζ $\zeta$ function

In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm m N $m\in {\mathbb {N}}$ (Condition G).

Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.

Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信