{"title":"Beurling ζ $\\ ζ $函数的carlson型零密度定理","authors":"Szilárd Gy. Révész","doi":"10.1112/jlms.70110","DOIUrl":null,"url":null,"abstract":"<p>In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$m\\in {\\mathbb {N}}$</annotation>\n </semantics></math> (Condition G).</p><p>Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.</p><p>Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70110","citationCount":"0","resultStr":"{\"title\":\"The Carlson-type zero-density theorem for the Beurling \\n \\n ζ\\n $\\\\zeta$\\n function\",\"authors\":\"Szilárd Gy. Révész\",\"doi\":\"10.1112/jlms.70110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$m\\\\in {\\\\mathbb {N}}$</annotation>\\n </semantics></math> (Condition G).</p><p>Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.</p><p>Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70110\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70110","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Carlson-type zero-density theorem for the Beurling
ζ
$\zeta$
function
In a previous paper, we proved a Carlson-type density theorem for zeroes in the critical strip for the Beurling zeta functions satisfying Axiom A of Knopfmacher. There we needed to invoke two additional conditions: the integrality of the norm (Condition B) and an “average Ramanujan condition” for the arithmetical function counting the number of different Beurling integers of the same norm (Condition G).
Here, we implement a new approach of Pintz using the classic zero-detecting sums coupled with Halász' method, but otherwise arguing in an elementary way avoiding, for example, large sieve-type inequalities or mean value estimates for Dirichlet polynomials. In this way, we give a new proof of a Carlson-type density estimate—with explicit constants—avoiding any use of the two additional conditions needed earlier.
Therefore, it is seen that the validity of a Carlson-type density estimate does not depend on any extra assumption—neither on the functional equation present for the Selberg class, nor on growth estimates of coefficients say of “average Ramanujan-type”—but is a general property presenting itself whenever the analytic continuation is guaranteed by Axiom A.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.