{"title":"局部紧量子群上的平均乘子","authors":"Matthew Daws, Jacek Krajczok, Christian Voigt","doi":"10.1112/jlms.70104","DOIUrl":null,"url":null,"abstract":"<p>We study an averaging procedure for completely bounded multipliers on a locally compact quantum group with respect to a compact quantum subgroup. As a consequence we show that central approximation properties of discrete quantum groups are equivalent to the corresponding approximation properties of their Drinfeld doubles. This is complemented by a discussion of the averaging of Fourier algebra elements. We compare the biinvariant Fourier algebra of the Drinfeld double of a discrete quantum group with the central Fourier algebra. In the unimodular case these are naturally identified, but we show by exhibiting a family of counter-examples that they differ in general.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70104","citationCount":"0","resultStr":"{\"title\":\"Averaging multipliers on locally compact quantum groups\",\"authors\":\"Matthew Daws, Jacek Krajczok, Christian Voigt\",\"doi\":\"10.1112/jlms.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study an averaging procedure for completely bounded multipliers on a locally compact quantum group with respect to a compact quantum subgroup. As a consequence we show that central approximation properties of discrete quantum groups are equivalent to the corresponding approximation properties of their Drinfeld doubles. This is complemented by a discussion of the averaging of Fourier algebra elements. We compare the biinvariant Fourier algebra of the Drinfeld double of a discrete quantum group with the central Fourier algebra. In the unimodular case these are naturally identified, but we show by exhibiting a family of counter-examples that they differ in general.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Averaging multipliers on locally compact quantum groups
We study an averaging procedure for completely bounded multipliers on a locally compact quantum group with respect to a compact quantum subgroup. As a consequence we show that central approximation properties of discrete quantum groups are equivalent to the corresponding approximation properties of their Drinfeld doubles. This is complemented by a discussion of the averaging of Fourier algebra elements. We compare the biinvariant Fourier algebra of the Drinfeld double of a discrete quantum group with the central Fourier algebra. In the unimodular case these are naturally identified, but we show by exhibiting a family of counter-examples that they differ in general.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.