Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Construction of multi-bubble blow-up solutions to the L 2 $L^2$ -critical half-wave equation 构建 L 2 $L^2$ 临界半波方程的多气泡炸裂解
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-20 DOI: 10.1112/jlms.12974
Daomin Cao, Yiming Su, Deng Zhang
{"title":"Construction of multi-bubble blow-up solutions to the \u0000 \u0000 \u0000 L\u0000 2\u0000 \u0000 $L^2$\u0000 -critical half-wave equation","authors":"Daomin Cao,&nbsp;Yiming Su,&nbsp;Deng Zhang","doi":"10.1112/jlms.12974","DOIUrl":"https://doi.org/10.1112/jlms.12974","url":null,"abstract":"<p>This paper concerns the bubbling phenomena for the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math>-critical half-wave equation in dimension one. Given arbitrarily finitely many distinct singularities, we construct blow-up solutions concentrating exactly at these singularities. This provides the first examples of multi-bubble solutions for the half-wave equation. In particular, the solutions exhibit the mass quantization property. Our proof strategy draws upon the modulation method in Krieger, Lenzmann and Raphaël [Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129] for the single-bubble case, and explores the localization techniques in Cao, Su and Zhang [Arch. Ration. Mech. Anal. 247 (2023), no. 1, Paper No. 4] and Röckner, Su and Zhang [Trans. Amer. Math. Soc., 377 (2024), no. 1, 517–588] for bubbling solutions to non-linear Schrödinger equations (NLS). However, unlike the single-bubble or NLS cases, different bubbles exhibit the strongest interactions in dimension one. In order to get sharp estimates to control these interactions, as well as non-local effects on localization functions, we utilize the Carlderón estimate and the integration representation formula of the half-wave operator, and find that there exists a narrow room between the orders <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>t</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$|t|^{2+}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>t</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$|t|^{3-}$</annotation>\u0000 </semantics></math> for the remainder in the geometrical decomposition. Based on this, a novel bootstrap scheme is introduced to address the multi-bubble non-local structure.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142021777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension of planar Hölder homeomorphisms 平面赫尔德同构的扩展
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-17 DOI: 10.1112/jlms.12970
Stanislav Hencl, Aleksis Koski
{"title":"Extension of planar Hölder homeomorphisms","authors":"Stanislav Hencl,&nbsp;Aleksis Koski","doi":"10.1112/jlms.12970","DOIUrl":"https://doi.org/10.1112/jlms.12970","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$alpha in (0,1)$</annotation>\u0000 </semantics></math>. We show that any <span></span><math>\u0000 <semantics>\u0000 <mi>α</mi>\u0000 <annotation>$alpha$</annotation>\u0000 </semantics></math>-Hölder homeomorphism from the unit circle in the plane to the plane can be extended to an <span></span><math>\u0000 <semantics>\u0000 <mi>α</mi>\u0000 <annotation>$alpha$</annotation>\u0000 </semantics></math>-Hölder homeomorphism from the whole unit disc.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special cubic zeros and the dual variety 特殊立方零点和对偶变化
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-14 DOI: 10.1112/jlms.12975
Victor Y. Wang
{"title":"Special cubic zeros and the dual variety","authors":"Victor Y. Wang","doi":"10.1112/jlms.12975","DOIUrl":"https://doi.org/10.1112/jlms.12975","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math> be a diagonal cubic form over <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$mathbb {Z}$</annotation>\u0000 </semantics></math> in six variables. From the dual variety in the delta method of Duke–Friedlander–Iwaniec and Heath-Brown, we unconditionally extract a weighted count of certain special integral zeros of <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math> in regions of diameter <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$X rightarrow infty$</annotation>\u0000 </semantics></math>. Heath-Brown did the same in four variables, but our analysis differs and captures some novel features. We also put forth an axiomatic framework for more general <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12975","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature varifolds with orthogonal boundary 具有正交边界的曲率变方体
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-14 DOI: 10.1112/jlms.12976
Ernst Kuwert, Marius Müller
{"title":"Curvature varifolds with orthogonal boundary","authors":"Ernst Kuwert,&nbsp;Marius Müller","doi":"10.1112/jlms.12976","DOIUrl":"https://doi.org/10.1112/jlms.12976","url":null,"abstract":"&lt;p&gt;We consider the class &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;⊥&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${bf S}^m_perp (Omega)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;annotation&gt;$m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional surfaces in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$overline{Omega } subset {mathbb {R}}^n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that intersect &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$S = partial Omega$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; orthogonally along the boundary. A piece of an affine &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;annotation&gt;$m$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-plane in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;⊥&lt;/mo&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${bf S}^m_perp (Omega)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is called an orthogonal slice. We prove estimates for the area by the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;$L^p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; integral of the second fundamental form in three cases: first, when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;annotation&gt;$Omega$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; admits no orthogonal slices, second for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12976","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behavior of Laplacian eigenvalues of subspace inclusion graphs 子空间包含图的拉普拉奇特征值的渐近行为
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-13 DOI: 10.1112/jlms.12972
Alan Lew
{"title":"Asymptotic behavior of Laplacian eigenvalues of subspace inclusion graphs","authors":"Alan Lew","doi":"10.1112/jlms.12972","DOIUrl":"https://doi.org/10.1112/jlms.12972","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mtext&gt;Fl&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$text{Fl}_{n,q}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the simplicial complex whose vertices are the nontrivial subspaces of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$mathbb {F}_q^n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and whose simplices correspond to families of subspaces forming a flag. Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mtext&gt;Fl&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Delta ^{+}_k(text{Fl}_{n,q})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional weighted upper Laplacian on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mtext&gt;Fl&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$ text{Fl}_{n,q}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The spectrum of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mtext&gt;Fl&lt;/mtext&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Delta ^{+}_k","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient asymptotics of the modified Camassa–Holm equation 修正卡马萨-霍尔姆方程的瞬态渐近线
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-08-01 DOI: 10.1112/jlms.12967
Taiyang Xu, Yiling Yang, Lun Zhang
{"title":"Transient asymptotics of the modified Camassa–Holm equation","authors":"Taiyang Xu,&nbsp;Yiling Yang,&nbsp;Lun Zhang","doi":"10.1112/jlms.12967","DOIUrl":"https://doi.org/10.1112/jlms.12967","url":null,"abstract":"<p>We investigate long time asymptotics of the modified Camassa–Holm equation in three transition zones under a nonzero background. The first transition zone lies between the soliton region and the first oscillatory region, the second one lies between the second oscillatory region and the fast decay region, and possibly, the third one, namely, the collisionless shock region, that bridges the first transition region and the first oscillatory region. Under a low regularity condition on the initial data, we obtain Painlevé-type asymptotic formulae in the first two transition regions, while the transient asymptotics in the third region involves the Jacobi theta function. We establish our results by performing a <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>∂</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <annotation>$bar{partial }$</annotation>\u0000 </semantics></math> nonlinear steepest descent analysis to the associated Riemann–Hilbert problem.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On curvature bounds in Lorentzian length spaces 论洛伦兹长度空间中的曲率边界
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-07-30 DOI: 10.1112/jlms.12971
Tobias Beran, Michael Kunzinger, Felix Rott
{"title":"On curvature bounds in Lorentzian length spaces","authors":"Tobias Beran,&nbsp;Michael Kunzinger,&nbsp;Felix Rott","doi":"10.1112/jlms.12971","DOIUrl":"https://doi.org/10.1112/jlms.12971","url":null,"abstract":"<p>We introduce several new notions of (sectional) curvature bounds for Lorentzian pre-length spaces: On the one hand, we provide convexity/concavity conditions for the (modified) time separation function, and, on the other hand, we study four-point conditions, which are suitable also for the non-intrinsic setting. Via these concepts, we are able to establish (under mild assumptions) the equivalence of all previously known formulations of curvature bounds. In particular, we obtain the equivalence of causal and timelike curvature bounds as introduced by Kunzinger and Sämann.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12971","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blowup algebras of determinantal ideals in prime characteristic 素特征中行列式理想的吹胀代数
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-07-23 DOI: 10.1112/jlms.12969
Alessandro De Stefani, Jonathan Montaño, Luis Núñez-Betancourt
{"title":"Blowup algebras of determinantal ideals in prime characteristic","authors":"Alessandro De Stefani,&nbsp;Jonathan Montaño,&nbsp;Luis Núñez-Betancourt","doi":"10.1112/jlms.12969","DOIUrl":"https://doi.org/10.1112/jlms.12969","url":null,"abstract":"<p>We study when blowup algebras are <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-split or strongly <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew-symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-split filtrations and symbolic <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-split ideals.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141967507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New examples of 2-nondegenerate real hypersurfaces in C N $mathbb {C}^N$ with arbitrary nilpotent symbols C N $mathbb {C}^N$ 中具有任意零势符号的 2 非enerate real hypersurfaces 的新示例
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-07-20 DOI: 10.1112/jlms.12962
Martin Kolář, Ilya Kossovskiy, David Sykes
{"title":"New examples of 2-nondegenerate real hypersurfaces in \u0000 \u0000 \u0000 C\u0000 N\u0000 \u0000 $mathbb {C}^N$\u0000 with arbitrary nilpotent symbols","authors":"Martin Kolář,&nbsp;Ilya Kossovskiy,&nbsp;David Sykes","doi":"10.1112/jlms.12962","DOIUrl":"https://doi.org/10.1112/jlms.12962","url":null,"abstract":"<p>We introduce a class of uniformly 2-nondegenerate CR hypersurfaces in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>N</mi>\u0000 </msup>\u0000 <annotation>$mathbb {C}^N$</annotation>\u0000 </semantics></math>, for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$N&amp;gt;3$</annotation>\u0000 </semantics></math>, having a rank 1 Levi kernel. The class is first of all remarkable by the fact that for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$N&amp;gt;3$</annotation>\u0000 </semantics></math> it forms an <i>explicit</i> infinite-dimensional family of everywhere 2-nondegenerate hypersurfaces. To the best of our knowledge, this is the first such construction. Besides, the class contains infinite-dimensional families of nonequivalent structures having a given constant nilpotent CR symbol for every such symbol. Using methods that are able to handle all cases with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 <annotation>$N&amp;gt;5$</annotation>\u0000 </semantics></math> simultaneously, we solve the equivalence problem for the considered structures whose symbol is represented by a single Jordan block, classify their algebras of infinitesimal symmetries, and classify the locally homogeneous structures among them. We show that the remaining considered structures, which have symbols represented by a direct sum of Jordan blocks, can be constructed from the single block structures through simple linking and extension processes.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sublinear bilipschitz equivalence and sublinearly Morse boundaries 亚线性双唇等价和亚线性莫尔斯边界
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-07-20 DOI: 10.1112/jlms.12960
Gabriel Pallier, Yulan Qing
{"title":"Sublinear bilipschitz equivalence and sublinearly Morse boundaries","authors":"Gabriel Pallier,&nbsp;Yulan Qing","doi":"10.1112/jlms.12960","DOIUrl":"https://doi.org/10.1112/jlms.12960","url":null,"abstract":"<p>A sublinear bilipschitz equivalence (SBE) between metric spaces is a map from one space to another that distorts distances with bounded multiplicative constants and sublinear additive error. Given any sublinear function, the associated sublinearly Morse boundaries are defined for all geodesic proper metric spaces as a quasi-isometrically invariant and metrizable topological space of quasi-geodesic rays. In this paper, we prove that sublinearly-Morse boundaries of proper geodesic metric spaces are invariant under suitable SBEs. A tool in the proof is the use of sublinear rays, that is, sublinear bilispchitz embeddings of the half line, generalizing quasi-geodesic rays. As an application, we distinguish a pair of right-angled Coxeter groups brought up by Behrstock up to SBE. We also show that under mild assumptions, generic random walks on countable groups are sublinear rays.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信