Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Algebraic fibre spaces with strictly nef relative anti-log canonical divisor 具有严格 nef 相对反 log 典范除数的代数纤维空间
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-29 DOI: 10.1112/jlms.12942
Jie Liu, Wenhao Ou, Juanyong Wang, Xiaokui Yang, Guolei Zhong
{"title":"Algebraic fibre spaces with strictly nef relative anti-log canonical divisor","authors":"Jie Liu,&nbsp;Wenhao Ou,&nbsp;Juanyong Wang,&nbsp;Xiaokui Yang,&nbsp;Guolei Zhong","doi":"10.1112/jlms.12942","DOIUrl":"https://doi.org/10.1112/jlms.12942","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>Δ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,varDelta)$</annotation>\u0000 </semantics></math> be a projective klt pair, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <mi>X</mi>\u0000 <mo>→</mo>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 <annotation>$fcolon Xrightarrow Y$</annotation>\u0000 </semantics></math> a fibration to a smooth projective variety <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> with strictly nef relative anti-log canonical divisor <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mi>X</mi>\u0000 <mo>/</mo>\u0000 <mi>Y</mi>\u0000 </mrow>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <mi>Δ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$-(K_{X/Y}+varDelta)$</annotation>\u0000 </semantics></math>. We prove that <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> is a locally trivial fibration with rationally connected fibres, and the base <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> is a canonically polarized hyperbolic manifold. In particular, when <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> is a single point, we establish that <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> is rationally connected. Moreover, when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>dim</mo>\u0000 <mi>X</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dim X=3$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <mi>Δ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$-(K_X","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141182262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Branching random walk with non-local competition 非局部竞争的分支随机行走
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-29 DOI: 10.1112/jlms.12919
Pascal Maillard, Sarah Penington
{"title":"Branching random walk with non-local competition","authors":"Pascal Maillard,&nbsp;Sarah Penington","doi":"10.1112/jlms.12919","DOIUrl":"https://doi.org/10.1112/jlms.12919","url":null,"abstract":"<p>We study the Bolker–Pacala–Dieckmann–Law (BPDL) model of population dynamics in the regime of large population density. The BPDL model is a particle system in which particles reproduce, move randomly in space and compete with each other locally. We rigorously prove global survival as well as a shape theorem describing the asymptotic spread of the population, when the population density is sufficiently large. In contrast to most previous studies, we allow the competition kernel to have an arbitrary, even infinite range, whence the term <i>non-local competition</i>. This makes the particle system non-monotone and of infinite-range dependence, meaning that the usual comparison arguments break down and have to be replaced by a more hands-on approach. Some ideas in the proof are inspired by works on the non-local Fisher-KPP equation, but the stochasticity of the model creates new difficulties.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141164788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic forms and Genus Theory: A link with 2-descent and an application to nontrivial specializations of ideal classes 二次型与属理论:与二阶后裔的联系以及理想类的非琐特殊化应用
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-28 DOI: 10.1112/jlms.12921
William Dallaporta
{"title":"Quadratic forms and Genus Theory: A link with 2-descent and an application to nontrivial specializations of ideal classes","authors":"William Dallaporta","doi":"10.1112/jlms.12921","DOIUrl":"https://doi.org/10.1112/jlms.12921","url":null,"abstract":"<p>Genus Theory is a classical feature of integral binary quadratic forms. Using the author's generalization of the well-known correspondence between quadratic form classes and ideal classes of quadratic algebras, we extend it to the case when quadratic forms are twisted and have coefficients in any principal ideal domain (PID) <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math>. When <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mo>=</mo>\u0000 <mi>K</mi>\u0000 <mo>[</mo>\u0000 <mi>X</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>${R = mathbb {K}[X]}$</annotation>\u0000 </semantics></math>, we show that the Genus Theory map is the quadratic form version of the 2-descent map on a certain hyperelliptic curve. As an application, we make a contribution to a question of Agboola and Pappas regarding a specialization problem of divisor classes on hyperelliptic curves. Under suitable assumptions, we prove that the set of nontrivial specializations has density 1.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12921","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological endomorphism rings of tilting complexes 倾斜复合物的拓扑内形环
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-28 DOI: 10.1112/jlms.12939
Michal Hrbek
{"title":"Topological endomorphism rings of tilting complexes","authors":"Michal Hrbek","doi":"10.1112/jlms.12939","DOIUrl":"https://doi.org/10.1112/jlms.12939","url":null,"abstract":"<p>In a compactly generated triangulated category, we introduce a class of tilting objects satisfying a certain purity condition. We call these the decent tilting objects and show that the tilting heart induced by any such object is equivalent to a category of contramodules over the endomorphism ring of the tilting object endowed with a natural linear topology. This extends the recent result for <i>n</i>-tilting modules by Positselski and Št'ovíček. In the setting of the derived category of modules over a ring, we show that the decent tilting complexes are precisely the silting complexes such that their character dual is cotilting. The hearts of cotilting complexes of cofinite type turn out to be equivalent to the category of discrete modules with respect to the same topological ring. Finally, we provide a kind of Morita theory in this setting: Decent tilting complexes correspond to pairs consisting of a tilting and a cotilting-derived equivalence as described above tied together by a tensor compatibility condition.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parafree graphs of groups with cyclic edge groups 有循环边群的群的无参数图
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-26 DOI: 10.1112/jlms.12937
Andrei Jaikin-Zapirain, Ismael Morales
{"title":"Parafree graphs of groups with cyclic edge groups","authors":"Andrei Jaikin-Zapirain,&nbsp;Ismael Morales","doi":"10.1112/jlms.12937","DOIUrl":"https://doi.org/10.1112/jlms.12937","url":null,"abstract":"<p>We establish a combination theorem for parafree groups. These groups were introduced by Baumslag in the sixties. One of the current motivations for a better understanding of their structure is that they show up naturally in connection with Remeslennikov's conjecture on the profinite rigidity of free groups. In this article, we determine when the fundamental group of a finite graph of groups with cyclic edge groups is parafree.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blocking sets, minimal codes and trifferent codes 阻塞集、最小编码和三不同编码
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-26 DOI: 10.1112/jlms.12938
Anurag Bishnoi, Jozefien D'haeseleer, Dion Gijswijt, Aditya Potukuchi
{"title":"Blocking sets, minimal codes and trifferent codes","authors":"Anurag Bishnoi,&nbsp;Jozefien D'haeseleer,&nbsp;Dion Gijswijt,&nbsp;Aditya Potukuchi","doi":"10.1112/jlms.12938","DOIUrl":"https://doi.org/10.1112/jlms.12938","url":null,"abstract":"<p>We prove new upper bounds on the smallest size of affine blocking sets, that is, sets of points in a finite affine space that intersect every affine subspace of a fixed codimension. We show an equivalence between affine blocking sets with respect to codimension-2 subspaces that are generated by taking a union of lines through the origin, and strong blocking sets in the corresponding projective space, which in turn are equivalent to minimal codes. Using this equivalence, we improve the current best upper bounds on the smallest size of a strong blocking set in finite projective spaces over fields of size at least 3. Furthermore, using coding theoretic techniques, we improve the current best lower bounds on a strong blocking set. Our main motivation for these new bounds is their application to trifferent codes, which are sets of ternary codes of length <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> with the property that for any three distinct codewords there is a coordinate where they all have distinct values. Over the finite field <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mn>3</mn>\u0000 </msub>\u0000 <annotation>$mathbb {F}_3$</annotation>\u0000 </semantics></math>, we prove that minimal codes are equivalent to linear trifferent codes. Using this equivalence, we show that any linear trifferent code of length <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> has size at most <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>/</mo>\u0000 <mn>4.55</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$3^{n/4.55}$</annotation>\u0000 </semantics></math>, improving the recent upper bound of Pohoata and Zakharov. Moreover, we show the existence of linear trifferent codes of length <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> and size at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>3</mn>\u0000 </mfrac>\u0000 <msup>\u0000 <mfenced>\u0000 <mn>9</mn>\u0000 <mo>/</mo>\u0000 <mn>5</mn>\u0000 </mfenced>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>/</mo>\u0000 <mn>4</mn>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Completely bounded norms of k $k$ -positive maps k $k$ 正映射的完全有界规范
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-25 DOI: 10.1112/jlms.12936
Guillaume Aubrun, Kenneth R. Davidson, Alexander Müller-Hermes, Vern I. Paulsen, Mizanur Rahaman
{"title":"Completely bounded norms of \u0000 \u0000 k\u0000 $k$\u0000 -positive maps","authors":"Guillaume Aubrun,&nbsp;Kenneth R. Davidson,&nbsp;Alexander Müller-Hermes,&nbsp;Vern I. Paulsen,&nbsp;Mizanur Rahaman","doi":"10.1112/jlms.12936","DOIUrl":"https://doi.org/10.1112/jlms.12936","url":null,"abstract":"<p>Given an operator system <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$mathcal {S}$</annotation>\u0000 </semantics></math>, we define the parameters <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>r</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>S</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$r_k(mathcal {S})$</annotation>\u0000 </semantics></math> (resp. <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>d</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>S</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$d_k(mathcal {S})$</annotation>\u0000 </semantics></math>) defined as the maximal value of the completely bounded norm of a unital <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-positive map from an arbitrary operator system into <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$mathcal {S}$</annotation>\u0000 </semantics></math> (resp. from <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$mathcal {S}$</annotation>\u0000 </semantics></math> into an arbitrary operator system). In the case of the matrix algebras <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$mathsf {M}_n$</annotation>\u0000 </semantics></math>, for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>⩽</mo>\u0000 <mi>k</mi>\u0000 <mo>⩽</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation>$1 leqslant k leqslant n$</annotation>\u0000 </semantics></math>, we compute the exact value <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>r</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mfrac>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iwahori-metaplectic duality 岩崛-偏转二重性
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-23 DOI: 10.1112/jlms.12896
Ben Brubaker, Valentin Buciumas, Daniel Bump, Henrik P. A. Gustafsson
{"title":"Iwahori-metaplectic duality","authors":"Ben Brubaker,&nbsp;Valentin Buciumas,&nbsp;Daniel Bump,&nbsp;Henrik P. A. Gustafsson","doi":"10.1112/jlms.12896","DOIUrl":"https://doi.org/10.1112/jlms.12896","url":null,"abstract":"<p>We construct a family of solvable lattice models whose partition functions include <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-adic Whittaker functions for general linear groups from two very different sources: from Iwahori-fixed vectors and from metaplectic covers. Interpolating between them by Drinfeld twisting, we uncover unexpected relationships between Iwahori and metaplectic Whittaker functions. This leads to new Demazure operator recurrence relations for spherical metaplectic Whittaker functions. In prior work of the authors it was shown that the row transfer matrices of certain lattice models for spherical metaplectic Whittaker functions could be represented as ‘half-vertex operators’ operating on the <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math>-Fock space of Kashiwara, Miwa and Stern. In this paper the same is shown for all the members of this more general family of lattice models including the one representing Iwahori Whittaker functions.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12896","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational cross-sections, bounded generation, and orders on groups 有理截面、有界生成和群上的阶数
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-23 DOI: 10.1112/jlms.12920
Corentin Bodart
{"title":"Rational cross-sections, bounded generation, and orders on groups","authors":"Corentin Bodart","doi":"10.1112/jlms.12920","DOIUrl":"https://doi.org/10.1112/jlms.12920","url":null,"abstract":"<p>We provide new examples of groups without rational cross-sections (also called regular normal forms), using connections with bounded generation and rational orders on groups. Our examples contain a finitely presented HNN-extension of the first Grigorchuk group. This last group is the first example of finitely presented group with solvable word problem and without rational cross-sections. It is also not autostackable, and has no left-regular complete rewriting system.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12920","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valuations, completions, and hyperbolic actions of metabelian groups 元胞群的估值、补全和双曲作用
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-05-23 DOI: 10.1112/jlms.12916
Carolyn R. Abbott, Sahana Balasubramanya, Alexander J. Rasmussen
{"title":"Valuations, completions, and hyperbolic actions of metabelian groups","authors":"Carolyn R. Abbott,&nbsp;Sahana Balasubramanya,&nbsp;Alexander J. Rasmussen","doi":"10.1112/jlms.12916","DOIUrl":"https://doi.org/10.1112/jlms.12916","url":null,"abstract":"<p>Actions on hyperbolic metric spaces are an important tool for studying groups, and so it is natural, but difficult, to attempt to classify all such actions of a fixed group. In this paper, we build strong connections between hyperbolic geometry and commutative algebra in order to classify the cobounded hyperbolic actions of numerous metabelian groups up to a coarse equivalence. In particular, we turn this classification problem into the problems of classifying ideals in the completions of certain rings and calculating invariant subspaces of matrices. We use this framework to classify the cobounded hyperbolic actions of many abelian-by-cyclic groups associated to expanding integer matrices. Each such action is equivalent to an action on a tree or on a Heintze group (a classically studied class of negatively curved Lie groups). Our investigations incorporate number systems, factorization in formal power series rings, completions, and valuations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.2,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12916","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141085085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信