Farshid Hajir, Michael Larsen, Christian Maire, Ravi Ramakrishna
{"title":"On tamely ramified infinite Galois extensions","authors":"Farshid Hajir, Michael Larsen, Christian Maire, Ravi Ramakrishna","doi":"10.1112/jlms.70209","DOIUrl":"10.1112/jlms.70209","url":null,"abstract":"<p>For a number field <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>, we consider <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>K</mi>\u0000 <mi>ta</mi>\u0000 </msup>\u0000 <annotation>$K^{{rm ta}}$</annotation>\u0000 </semantics></math> the maximal tamely ramified algebraic extension of <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>, and its Galois group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>G</mi>\u0000 <mi>K</mi>\u0000 <mi>ta</mi>\u0000 </msubsup>\u0000 <mo>=</mo>\u0000 <mi>Gal</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>K</mi>\u0000 <mi>ta</mi>\u0000 </msup>\u0000 <mo>/</mo>\u0000 <mi>K</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$G^{{rm ta}}_K= mathrm{Gal}(K^{{rm ta}}/K)$</annotation>\u0000 </semantics></math>. Choose an odd prime <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. Our guiding aim is to characterize the finitely generated pro-<span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> quotients of <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>G</mi>\u0000 <mi>K</mi>\u0000 <mi>ta</mi>\u0000 </msubsup>\u0000 <annotation>$G^{{rm ta}}_K$</annotation>\u0000 </semantics></math>. We give a unified point of view by introducing the notion of <i>stably inertially generated</i> pro-<span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> groups <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>, for which linear groups are archetypes. This key notion is compatible with local <i>tame liftings</i> as used in the Scholz–Reichardt theorem. We realize every finitely generated pro-<span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> group <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> which is stably inertially generated as a quotient of <span></span><math>\u0000 <semantics>\u0000","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak compactness cardinals for strong logics and subtlety properties of the class of ordinals","authors":"Philipp Lücke","doi":"10.1112/jlms.70215","DOIUrl":"10.1112/jlms.70215","url":null,"abstract":"<p>Motivated by recent work of Boney, Dimopoulos, Gitman, and Magidor, we characterize the existence of weak compactness cardinals for all abstract logics through combinatorial properties of the class of ordinals. This analysis is then used to show that, in contrast to the existence of strong compactness cardinals, the existence of weak compactness cardinals for abstract logics does not imply the existence of a strongly inaccessible cardinal. More precisely, it is proven that the existence of a proper class of subtle cardinals is consistent with the axioms of <span></span><math>\u0000 <semantics>\u0000 <mi>ZFC</mi>\u0000 <annotation>${rm {ZFC}}$</annotation>\u0000 </semantics></math> if and only if it is not possible to derive the existence of strongly inaccessible cardinals from the existence of weak compactness cardinals for all abstract logics. Complementing this result, it is shown that the existence of weak compactness cardinals for all abstract logics implies that unboundedly many ordinals are strongly inaccessible in the inner model <span></span><math>\u0000 <semantics>\u0000 <mi>HOD</mi>\u0000 <annotation>${rm {HOD}}$</annotation>\u0000 </semantics></math> of all hereditarily ordinal definable sets.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70215","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144519647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivan Cheltsov, Lisa Marquand, Yuri Tschinkel, Zhijia Zhang
{"title":"Equivariant geometry of singular cubic threefolds, II","authors":"Ivan Cheltsov, Lisa Marquand, Yuri Tschinkel, Zhijia Zhang","doi":"10.1112/jlms.70224","DOIUrl":"10.1112/jlms.70224","url":null,"abstract":"<p>We study linearizability of actions of finite groups on cubic threefolds with nonnodal isolated singularities.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144520311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modularity of \u0000 \u0000 d\u0000 $d$\u0000 -elliptic loci with level structure","authors":"François Greer, Carl Lian","doi":"10.1112/jlms.70212","DOIUrl":"10.1112/jlms.70212","url":null,"abstract":"<p>We consider the generating series of special cycles on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>×</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>N</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {A}_1(N)times mathcal {A}_g(N)$</annotation>\u0000 </semantics></math>, with full level <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math> structure, valued in the cohomology of degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>g</mi>\u0000 </mrow>\u0000 <annotation>$2g$</annotation>\u0000 </semantics></math>. The modularity theorem of Kudla–Millson for locally symmetric spaces implies that these series are modular. When <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$N=1$</annotation>\u0000 </semantics></math>, the images of these loci in <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 <annotation>$mathcal {A}_g$</annotation>\u0000 </semantics></math> are the <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-elliptic Noether–Lefschetz loci, which are conjectured to be modular. In the Appendix, it is shown that the resulting modular forms are nonzero for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$g=2$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>⩾</mo>\u0000 <mn>11</mn>\u0000 </mrow>\u0000 <annotation>$Ngeqslant 11$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>≠</mo>\u0000 <mn>12</mn>\u0000 </mrow>\u0000 <annotation>$Nne 12$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144473187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}