{"title":"Local cone multipliers and Cauchy–Szegö projections in bounded symmetric domains","authors":"Fernando Ballesta Yagüe, Gustavo Garrigós","doi":"10.1112/jlms.12986","DOIUrl":"https://doi.org/10.1112/jlms.12986","url":null,"abstract":"<p>We show that the cone multiplier satisfies local <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$L^p$</annotation>\u0000 </semantics></math>-<span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>q</mi>\u0000 </msup>\u0000 <annotation>$L^q$</annotation>\u0000 </semantics></math> bounds only in the trivial range <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>⩽</mo>\u0000 <mi>q</mi>\u0000 <mo>⩽</mo>\u0000 <mn>2</mn>\u0000 <mo>⩽</mo>\u0000 <mi>p</mi>\u0000 <mo>⩽</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$1leqslant qleqslant 2leqslant pleqslant infty$</annotation>\u0000 </semantics></math>. To do so, we suitably adapt to this setting the proof of Fefferman for the ball multiplier. As a consequence we answer negatively a question by Békollé and Bonami, regarding the continuity from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>q</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$L^prightarrow L^q$</annotation>\u0000 </semantics></math> of the Cauchy–Szegö projections associated with a class of bounded symmetric domains in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {C}}^n$</annotation>\u0000 </semantics></math> with rank <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$rgeqslant 2$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12986","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the modulus of continuity of solutions to nonlocal parabolic equations","authors":"Naian Liao","doi":"10.1112/jlms.12985","DOIUrl":"https://doi.org/10.1112/jlms.12985","url":null,"abstract":"<p>A general modulus of continuity is quantified for locally bounded, local, weak solutions to nonlocal parabolic equations, under a minimal tail condition. Hölder modulus of continuity is then deduced under a slightly stronger tail condition. These regularity estimates are demonstrated under the framework of nonlocal <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplacian with measurable kernels.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12985","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nijenhuis operators with a unity and \u0000 \u0000 F\u0000 $F$\u0000 -manifolds","authors":"Evgenii I. Antonov, Andrey Yu. Konyaev","doi":"10.1112/jlms.12983","DOIUrl":"https://doi.org/10.1112/jlms.12983","url":null,"abstract":"<p>The core object of this paper is a pair <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>L</mi>\u0000 <mo>,</mo>\u0000 <mi>e</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(L, e)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> is a Nijenhuis operator and <span></span><math>\u0000 <semantics>\u0000 <mi>e</mi>\u0000 <annotation>$e$</annotation>\u0000 </semantics></math> is a vector field satisfying a specific Lie derivative condition, that is, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mi>e</mi>\u0000 </msub>\u0000 <mi>L</mi>\u0000 <mo>=</mo>\u0000 <mo>Id</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {L}_{e}L=operatorname{Id}$</annotation>\u0000 </semantics></math>. Our research unfolds in two parts. In the first part, we establish a splitting theorem for Nijenhuis operators with a unity, offering an effective reduction of their study to cases where <span></span><math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math> has either one real or two complex conjugate eigenvalues at a given point. We further provide the normal forms for <span></span><math>\u0000 <semantics>\u0000 <mi>gl</mi>\u0000 <annotation>$mathrm{gl}$</annotation>\u0000 </semantics></math>-regular Nijenhuis operators with a unity around algebraically generic points, along with seminormal forms for dimensions 2 and 3. In the second part, we establish the relationship between Nijenhuis operators with a unity and <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-manifolds. Specifically, we prove that the class of regular <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-manifolds coincides with the class of Nijenhuis manifolds with a cyclic unity. Extending our results from dimension 3, we reveal seminormal forms for corresponding <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-manifolds around singularities.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12983","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}