Dimension of homogeneous iterated function systems with algebraic translations

IF 1.2 2区 数学 Q1 MATHEMATICS
De-Jun Feng, Zhou Feng
{"title":"Dimension of homogeneous iterated function systems with algebraic translations","authors":"De-Jun Feng,&nbsp;Zhou Feng","doi":"10.1112/jlms.70222","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$ \\mu$</annotation>\n </semantics></math> be the self-similar measure associated with a homogeneous iterated function system <span></span><math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>=</mo>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <mi>λ</mi>\n <mi>x</mi>\n <mo>+</mo>\n <msub>\n <mi>t</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation>$ \\Phi = \\lbrace \\lambda x + t_j \\rbrace _{j=1}^m$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and a probability vector <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>p</mi>\n <mi>j</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>m</mi>\n </msubsup>\n <annotation>$ (p_{j})_{j=1}^m$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≠</mo>\n <mi>λ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$0\\ne \\lambda \\in (-1,1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>j</mi>\n </msub>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$t_j\\in \\mathbb {R}$</annotation>\n </semantics></math>. Recently by modifying the arguments of Varjú in [28], Rapaport and Varjú [24] showed that if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>t</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$t_1,\\ldots, t_m$</annotation>\n </semantics></math> are rational numbers and <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>λ</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0&lt;\\lambda &lt;1$</annotation>\n </semantics></math>, then\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70222","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70222","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let μ $ \mu$ be the self-similar measure associated with a homogeneous iterated function system Φ = { λ x + t j } j = 1 m $ \Phi = \lbrace \lambda x + t_j \rbrace _{j=1}^m$ on R $\mathbb {R}$ and a probability vector ( p j ) j = 1 m $ (p_{j})_{j=1}^m$ , where 0 λ ( 1 , 1 ) $0\ne \lambda \in (-1,1)$ and t j R $t_j\in \mathbb {R}$ . Recently by modifying the arguments of Varjú in [28], Rapaport and Varjú [24] showed that if t 1 , , t m $t_1,\ldots, t_m$ are rational numbers and 0 < λ < 1 $0<\lambda <1$ , then

Abstract Image

Abstract Image

Abstract Image

具有代数平移的齐次迭代函数系统的维数
设μ $ \mu$为与齐次迭代函数系统相关的自相似测度Φ = {λ x + t j}j = 1 m $ \Phi = \lbrace \lambda x + t_j \rbrace _{j=1}^m$在R $\mathbb {R}$上和一个概率向量(p j) j = 1 m $ (p_{j})_{j=1}^m$,其中0≠λ∈(−1),1) $0\ne \lambda \in (-1,1)$, t j∈R $t_j\in \mathbb {R}$。最近,Rapaport和Varjú[24]通过修改[28]中Varjú的参数表明,如果t 1,…T m $t_1,\ldots, t_m$为有理数,0 &lt;λ &lt;1 $0<\lambda <1$,那么
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信