The first Steklov eigenvalue of planar graphs and beyond

IF 1 2区 数学 Q1 MATHEMATICS
Huiqiu Lin,  Da Zhao
{"title":"The first Steklov eigenvalue of planar graphs and beyond","authors":"Huiqiu Lin,&nbsp; Da Zhao","doi":"10.1112/jlms.70238","DOIUrl":null,"url":null,"abstract":"<p>The Steklov eigenvalue problem was introduced over a century ago, and its discrete form attracted interest recently. Let <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$\\delta \\Omega$</annotation>\n </semantics></math> be the maximum vertex degree and the set of vertices of degree one in a graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, respectively. Let <span></span><math>\n <semantics>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\lambda _2$</annotation>\n </semantics></math> be the first (non-trivial) Steklov eigenvalue of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {G}, \\delta \\Omega)$</annotation>\n </semantics></math>. In this paper, using the circle packing theorem and conformal mapping, we first show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mn>8</mn>\n <mi>D</mi>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant 8D / |\\delta \\Omega |$</annotation>\n </semantics></math> for planar graphs. This can be seen as a discrete analog of Kokarev's bound, that is, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>&lt;</mo>\n <mn>8</mn>\n <mi>π</mi>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 &lt; 8\\pi / |\\partial \\Omega |$</annotation>\n </semantics></math> for compact surfaces with boundary of genus 0. Let <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be the maximum block size and the diameter of a block graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, respectively. Second, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mn>4</mn>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>D</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant 4 (B-1) (D-1)/ |\\delta \\Omega |$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mi>B</mi>\n <mo>/</mo>\n <mi>L</mi>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant B/L$</annotation>\n </semantics></math> for block graphs, which extend the results on trees by He and Hua. In the end, for trees with fixed leaf number and maximum degree, candidates that achieve the maximum first Steklov eigenvalue are given.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Steklov eigenvalue problem was introduced over a century ago, and its discrete form attracted interest recently. Let D $D$ and δ Ω $\delta \Omega$ be the maximum vertex degree and the set of vertices of degree one in a graph G $\mathcal {G}$ , respectively. Let λ 2 $\lambda _2$ be the first (non-trivial) Steklov eigenvalue of ( G , δ Ω ) $(\mathcal {G}, \delta \Omega)$ . In this paper, using the circle packing theorem and conformal mapping, we first show that λ 2 8 D / | δ Ω | $\lambda _2 \leqslant 8D / |\delta \Omega |$ for planar graphs. This can be seen as a discrete analog of Kokarev's bound, that is, λ 2 < 8 π / | Ω | $\lambda _2 < 8\pi / |\partial \Omega |$ for compact surfaces with boundary of genus 0. Let B $B$ and L $L$ be the maximum block size and the diameter of a block graph G $\mathcal {G}$ , respectively. Second, we prove that λ 2 4 ( B 1 ) ( D 1 ) / | δ Ω | $\lambda _2 \leqslant 4 (B-1) (D-1)/ |\delta \Omega |$ and λ 2 B / L $\lambda _2 \leqslant B/L$ for block graphs, which extend the results on trees by He and Hua. In the end, for trees with fixed leaf number and maximum degree, candidates that achieve the maximum first Steklov eigenvalue are given.

平面图及其以后的第一Steklov特征值
Steklov特征值问题是一个多世纪前提出的,它的离散形式最近引起了人们的兴趣。设D $D$和δ Ω $\delta \Omega$分别为图G $\mathcal {G}$中的最大顶点度和一阶顶点集。设λ 2 $\lambda _2$为(G, δ Ω) $(\mathcal {G}, \delta \Omega)$的第一个(非平凡的)Steklov特征值。本文利用圆填充定理和保角映射,首次证明了平面图形的λ 2≤8 D / | δ Ω | $\lambda _2 \leqslant 8D / |\delta \Omega |$。这可以看作是Kokarev界的离散模拟,即λ 2 &lt;8 π / |∂Ω | $\lambda _2 < 8\pi / |\partial \Omega |$对于边界为0的紧曲面。设B $B$和L $L$分别为最大块大小和块图G $\mathcal {G}$的直径。第二,证明了λ 2≤4 (B−1)(D−1)/| δ Ω | $\lambda _2 \leqslant 4 (B-1) (D-1)/ |\delta \Omega |$和λ 2≤B / L $\lambda _2 \leqslant B/L$,扩展了He和Hua在树上的结果。最后,对于叶数固定、度最大的树,给出了第一Steklov特征值最大的候选树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信