{"title":"The first Steklov eigenvalue of planar graphs and beyond","authors":"Huiqiu Lin, Da Zhao","doi":"10.1112/jlms.70238","DOIUrl":null,"url":null,"abstract":"<p>The Steklov eigenvalue problem was introduced over a century ago, and its discrete form attracted interest recently. Let <span></span><math>\n <semantics>\n <mi>D</mi>\n <annotation>$D$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$\\delta \\Omega$</annotation>\n </semantics></math> be the maximum vertex degree and the set of vertices of degree one in a graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, respectively. Let <span></span><math>\n <semantics>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\lambda _2$</annotation>\n </semantics></math> be the first (non-trivial) Steklov eigenvalue of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>G</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {G}, \\delta \\Omega)$</annotation>\n </semantics></math>. In this paper, using the circle packing theorem and conformal mapping, we first show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mn>8</mn>\n <mi>D</mi>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant 8D / |\\delta \\Omega |$</annotation>\n </semantics></math> for planar graphs. This can be seen as a discrete analog of Kokarev's bound, that is, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo><</mo>\n <mn>8</mn>\n <mi>π</mi>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 < 8\\pi / |\\partial \\Omega |$</annotation>\n </semantics></math> for compact surfaces with boundary of genus 0. Let <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> be the maximum block size and the diameter of a block graph <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$\\mathcal {G}$</annotation>\n </semantics></math>, respectively. Second, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mn>4</mn>\n <mrow>\n <mo>(</mo>\n <mi>B</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mi>D</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mrow>\n <mo>|</mo>\n <mi>δ</mi>\n <mi>Ω</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant 4 (B-1) (D-1)/ |\\delta \\Omega |$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>⩽</mo>\n <mi>B</mi>\n <mo>/</mo>\n <mi>L</mi>\n </mrow>\n <annotation>$\\lambda _2 \\leqslant B/L$</annotation>\n </semantics></math> for block graphs, which extend the results on trees by He and Hua. In the end, for trees with fixed leaf number and maximum degree, candidates that achieve the maximum first Steklov eigenvalue are given.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Steklov eigenvalue problem was introduced over a century ago, and its discrete form attracted interest recently. Let and be the maximum vertex degree and the set of vertices of degree one in a graph , respectively. Let be the first (non-trivial) Steklov eigenvalue of . In this paper, using the circle packing theorem and conformal mapping, we first show that for planar graphs. This can be seen as a discrete analog of Kokarev's bound, that is, for compact surfaces with boundary of genus 0. Let and be the maximum block size and the diameter of a block graph , respectively. Second, we prove that and for block graphs, which extend the results on trees by He and Hua. In the end, for trees with fixed leaf number and maximum degree, candidates that achieve the maximum first Steklov eigenvalue are given.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.