Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices

IF 1.2 2区 数学 Q1 MATHEMATICS
E. Kissin, D. Potapov, V. Shulman, F. Sukochev
{"title":"Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices","authors":"E. Kissin,&nbsp;D. Potapov,&nbsp;V. Shulman,&nbsp;F. Sukochev","doi":"10.1112/jlms.70218","DOIUrl":null,"url":null,"abstract":"<p>We show that if the Boyd indices of a symmetrically normed ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$B(H)$</annotation>\n </semantics></math> are nontrivial (differ from 1 and <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>), then for any Lipschitz function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>, the map <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>↦</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N\\mapsto f(N)$</annotation>\n </semantics></math> is Lipschitz on the set of normal operators with respect to the norm <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mi>J</mi>\n </msub>\n <annotation>$\\Vert \\cdot \\Vert _{J}$</annotation>\n </semantics></math>. In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>-stability with respect to an ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>: if a normal operator <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> is perturbed by an operator <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$X\\in J$</annotation>\n </semantics></math> in such a way that the operator <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$N+X$</annotation>\n </semantics></math> is normal, then <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$f(N+X)-f(N)\\in J$</annotation>\n </semantics></math>. As applications, we present various results on Gateaux and Frechet <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if the Boyd indices of a symmetrically normed ideal J $J$ of B ( H ) $B(H)$ are nontrivial (differ from 1 and $\infty$ ), then for any Lipschitz function f $f$ on C $\mathbb {C}$ , the map N f ( N ) $N\mapsto f(N)$ is Lipschitz on the set of normal operators with respect to the norm · J $\Vert \cdot \Vert _{J}$ . In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of J $J$ -stability with respect to an ideal J $J$ : if a normal operator N $N$ is perturbed by an operator X J $X\in J$ in such a way that the operator N + X $N+X$ is normal, then f ( N + X ) f ( N ) J $f(N+X)-f(N)\in J$ . As applications, we present various results on Gateaux and Frechet J $J$ -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.

Abstract Image

Abstract Image

Abstract Image

非平凡Boyd指标对称赋范理想上的算子- lipschitz函数
我们证明了如果B (H) $B(H)$的对称赋范理想J $J$的Boyd指标是非平凡的(不同于1和∞$\infty$),对于任意Lipschitz函数f $f$在C上$\mathbb {C}$,映射N∈f (N) $N\mapsto f(N)$是关于范数∥·∥J $\Vert \cdot \Vert _{J}$的正规算子集合上的Lipschitz。特别地,我们研究了Fuglede定理的某些增强形式所成立的理想;这对于处理普通操作符的函数是必要的。我们还考虑具有J $J$ -相对于理想J $J$的稳定性的函数:如果一个正常算子N $N$被一个算子X∈J $X\in J$扰动,使得算子N + X $N+X$正常,则f (N + X)−f (N)∈J $f(N+X)-f(N)\in J$。作为应用,我们给出了关于函数的Gateaux和Frechet J $J$ -可微性,以及Lipschitz函数在导数域上的作用的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信