关于修正Camassa-Holm方程的整体存在性

IF 1.2 2区 数学 Q1 MATHEMATICS
Yiling Yang, Engui Fan, Yue Liu
{"title":"关于修正Camassa-Holm方程的整体存在性","authors":"Yiling Yang,&nbsp;Engui Fan,&nbsp;Yue Liu","doi":"10.1112/jlms.70232","DOIUrl":null,"url":null,"abstract":"<p>The modified Camassa–Holm (mCH) equation is a model to describe the unidirectional propagation of shallow water waves. Without knowledge of any conservation quantities in the higher order Sobolev spaces for this type of the quasi-linear evaluation equation, obtaining global well-posedness for the mCH equation appears to be quite challenging. In this paper, we address the existence of global solutions in a weighted Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^{2,1}(\\mathbb {R})$</annotation>\n </semantics></math> to the Cauchy problem for the mCH equation. The key to prove this result is establish bijectivity between potential and reflection coefficient by using inverse scattering transform method based on the Riemann–Hilbert problem associated with the Cauchy problem for the mCH equation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the global existence for the modified Camassa–Holm equation\",\"authors\":\"Yiling Yang,&nbsp;Engui Fan,&nbsp;Yue Liu\",\"doi\":\"10.1112/jlms.70232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The modified Camassa–Holm (mCH) equation is a model to describe the unidirectional propagation of shallow water waves. Without knowledge of any conservation quantities in the higher order Sobolev spaces for this type of the quasi-linear evaluation equation, obtaining global well-posedness for the mCH equation appears to be quite challenging. In this paper, we address the existence of global solutions in a weighted Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H^{2,1}(\\\\mathbb {R})$</annotation>\\n </semantics></math> to the Cauchy problem for the mCH equation. The key to prove this result is establish bijectivity between potential and reflection coefficient by using inverse scattering transform method based on the Riemann–Hilbert problem associated with the Cauchy problem for the mCH equation.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70232\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70232","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

修正Camassa-Holm (mCH)方程是描述浅水波浪单向传播的一个模型。如果不知道这类拟线性评价方程在高阶Sobolev空间中的任何守恒量,获得mCH方程的全局适定性似乎是相当具有挑战性的。在本文中,我们讨论了加权Sobolev空间h2中全局解的存在性,1 (R)$ H^{2,1}(\mathbb {R})$求解mCH方程的柯西问题。证明这一结果的关键是利用基于Riemann-Hilbert问题和Cauchy问题的mCH方程的逆散射变换方法建立势系数和反射系数之间的双向性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the global existence for the modified Camassa–Holm equation

On the global existence for the modified Camassa–Holm equation

On the global existence for the modified Camassa–Holm equation

On the global existence for the modified Camassa–Holm equation

The modified Camassa–Holm (mCH) equation is a model to describe the unidirectional propagation of shallow water waves. Without knowledge of any conservation quantities in the higher order Sobolev spaces for this type of the quasi-linear evaluation equation, obtaining global well-posedness for the mCH equation appears to be quite challenging. In this paper, we address the existence of global solutions in a weighted Sobolev space H 2 , 1 ( R ) $H^{2,1}(\mathbb {R})$ to the Cauchy problem for the mCH equation. The key to prove this result is establish bijectivity between potential and reflection coefficient by using inverse scattering transform method based on the Riemann–Hilbert problem associated with the Cauchy problem for the mCH equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信