下载PDF
{"title":"具有代数平移的齐次迭代函数系统的维数","authors":"De-Jun Feng, Zhou Feng","doi":"10.1112/jlms.70222","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$ \\mu$</annotation>\n </semantics></math> be the self-similar measure associated with a homogeneous iterated function system <span></span><math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mo>=</mo>\n <msubsup>\n <mrow>\n <mo>{</mo>\n <mi>λ</mi>\n <mi>x</mi>\n <mo>+</mo>\n <msub>\n <mi>t</mi>\n <mi>j</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>m</mi>\n </msubsup>\n </mrow>\n <annotation>$ \\Phi = \\lbrace \\lambda x + t_j \\rbrace _{j=1}^m$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and a probability vector <span></span><math>\n <semantics>\n <msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>p</mi>\n <mi>j</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>m</mi>\n </msubsup>\n <annotation>$ (p_{j})_{j=1}^m$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≠</mo>\n <mi>λ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$0\\ne \\lambda \\in (-1,1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>j</mi>\n </msub>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$t_j\\in \\mathbb {R}$</annotation>\n </semantics></math>. Recently by modifying the arguments of Varjú in [28], Rapaport and Varjú [24] showed that if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>t</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$t_1,\\ldots, t_m$</annotation>\n </semantics></math> are rational numbers and <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>λ</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0<\\lambda <1$</annotation>\n </semantics></math>, then\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70222","citationCount":"0","resultStr":"{\"title\":\"Dimension of homogeneous iterated function systems with algebraic translations\",\"authors\":\"De-Jun Feng, Zhou Feng\",\"doi\":\"10.1112/jlms.70222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$ \\\\mu$</annotation>\\n </semantics></math> be the self-similar measure associated with a homogeneous iterated function system <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Φ</mi>\\n <mo>=</mo>\\n <msubsup>\\n <mrow>\\n <mo>{</mo>\\n <mi>λ</mi>\\n <mi>x</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>t</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n </mrow>\\n <annotation>$ \\\\Phi = \\\\lbrace \\\\lambda x + t_j \\\\rbrace _{j=1}^m$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math> and a probability vector <span></span><math>\\n <semantics>\\n <msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>p</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>j</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <mi>m</mi>\\n </msubsup>\\n <annotation>$ (p_{j})_{j=1}^m$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≠</mo>\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$0\\\\ne \\\\lambda \\\\in (-1,1)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>∈</mo>\\n <mi>R</mi>\\n </mrow>\\n <annotation>$t_j\\\\in \\\\mathbb {R}$</annotation>\\n </semantics></math>. Recently by modifying the arguments of Varjú in [28], Rapaport and Varjú [24] showed that if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>t</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>t</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$t_1,\\\\ldots, t_m$</annotation>\\n </semantics></math> are rational numbers and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo><</mo>\\n <mi>λ</mi>\\n <mo><</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0<\\\\lambda <1$</annotation>\\n </semantics></math>, then\\n\\n </p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70222\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70222","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用