{"title":"少顶点分段线性球的环楔感应和环举特性","authors":"Suyoung Choi, Hyeontae Jang, Mathieu Vallée","doi":"10.1112/jlms.70231","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-1)$</annotation>\n </semantics></math>-dimensional piecewise linear sphere on <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>m</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[m]$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$m\\leqslant n+4$</annotation>\n </semantics></math>. There are a canonical action of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional torus <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>m</mi>\n </msup>\n <annotation>$T^m$</annotation>\n </semantics></math> on the moment-angle complex <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n <annotation>$\\mathcal {Z}_K$</annotation>\n </semantics></math>, and a canonical action of <span></span><math>\n <semantics>\n <msubsup>\n <mi>Z</mi>\n <mn>2</mn>\n <mi>m</mi>\n </msubsup>\n <annotation>$\\mathbb {Z}_2^m$</annotation>\n </semantics></math> on the real moment-angle complex <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {R}\\mathcal {Z}_K$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathbb {Z}_2$</annotation>\n </semantics></math> is the additive group with two elements. We prove that any subgroup of <span></span><math>\n <semantics>\n <msubsup>\n <mi>Z</mi>\n <mn>2</mn>\n <mi>m</mi>\n </msubsup>\n <annotation>$\\mathbb {Z}_2^m$</annotation>\n </semantics></math> acting freely on <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {R}\\mathcal {Z}_K$</annotation>\n </semantics></math> is induced by a subtorus of <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>m</mi>\n </msup>\n <annotation>$T^m$</annotation>\n </semantics></math> acting freely on <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n <annotation>$\\mathcal {Z}_K$</annotation>\n </semantics></math>. The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mi>n</mi>\n <mo>⩽</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$m-n\\leqslant 4$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices\",\"authors\":\"Suyoung Choi, Hyeontae Jang, Mathieu Vallée\",\"doi\":\"10.1112/jlms.70231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> be an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-1)$</annotation>\\n </semantics></math>-dimensional piecewise linear sphere on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mi>m</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$[m]$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>⩽</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$m\\\\leqslant n+4$</annotation>\\n </semantics></math>. There are a canonical action of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-dimensional torus <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$T^m$</annotation>\\n </semantics></math> on the moment-angle complex <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n <annotation>$\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>, and a canonical action of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>Z</mi>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msubsup>\\n <annotation>$\\\\mathbb {Z}_2^m$</annotation>\\n </semantics></math> on the real moment-angle complex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbb {R}\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathbb {Z}_2$</annotation>\\n </semantics></math> is the additive group with two elements. We prove that any subgroup of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>Z</mi>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msubsup>\\n <annotation>$\\\\mathbb {Z}_2^m$</annotation>\\n </semantics></math> acting freely on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbb {R}\\\\mathcal {Z}_K$</annotation>\\n </semantics></math> is induced by a subtorus of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$T^m$</annotation>\\n </semantics></math> acting freely on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n <annotation>$\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>. The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$m-n\\\\leqslant 4$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70231\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70231","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设K $K$为[m] $[m]$上的(n−1)$(n-1)$维分段线性球,其中m≤n + 4 $m\leqslant n+4$。存在m $m$维环面T m $T^m$对矩角复合体Z K $\mathcal {Z}_K$的正则作用,z2 m $\mathbb {Z}_2^m$对实矩角复合体R zk $\mathbb {R}\mathcal {Z}_K$的正则作用;其中z2 $\mathbb {Z}_2$是两个元素的加性基团。我们证明了自由作用于rzk$\mathbb {R}\mathcal {Z}_K$上的z2m $\mathbb {Z}_2^m$的任何子群都是由tm的一个子环诱导的$T^m$自由作用于zk $\mathcal {Z}_K$。该证明主要利用了一种适当改进的环向楔归纳法和通用复合体的组合结构。作为副产物,这解决了m−n≤4 $m-n\leqslant 4$的分段线性球的环面提升问题。
Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices
Let be an -dimensional piecewise linear sphere on , where . There are a canonical action of -dimensional torus on the moment-angle complex , and a canonical action of on the real moment-angle complex , where is the additive group with two elements. We prove that any subgroup of acting freely on is induced by a subtorus of acting freely on . The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.