少顶点分段线性球的环楔感应和环举特性

IF 1.2 2区 数学 Q1 MATHEMATICS
Suyoung Choi, Hyeontae Jang, Mathieu Vallée
{"title":"少顶点分段线性球的环楔感应和环举特性","authors":"Suyoung Choi,&nbsp;Hyeontae Jang,&nbsp;Mathieu Vallée","doi":"10.1112/jlms.70231","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n-1)$</annotation>\n </semantics></math>-dimensional piecewise linear sphere on <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>m</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$[m]$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$m\\leqslant n+4$</annotation>\n </semantics></math>. There are a canonical action of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional torus <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>m</mi>\n </msup>\n <annotation>$T^m$</annotation>\n </semantics></math> on the moment-angle complex <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n <annotation>$\\mathcal {Z}_K$</annotation>\n </semantics></math>, and a canonical action of <span></span><math>\n <semantics>\n <msubsup>\n <mi>Z</mi>\n <mn>2</mn>\n <mi>m</mi>\n </msubsup>\n <annotation>$\\mathbb {Z}_2^m$</annotation>\n </semantics></math> on the real moment-angle complex <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {R}\\mathcal {Z}_K$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathbb {Z}_2$</annotation>\n </semantics></math> is the additive group with two elements. We prove that any subgroup of <span></span><math>\n <semantics>\n <msubsup>\n <mi>Z</mi>\n <mn>2</mn>\n <mi>m</mi>\n </msubsup>\n <annotation>$\\mathbb {Z}_2^m$</annotation>\n </semantics></math> acting freely on <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n </mrow>\n <annotation>$\\mathbb {R}\\mathcal {Z}_K$</annotation>\n </semantics></math> is induced by a subtorus of <span></span><math>\n <semantics>\n <msup>\n <mi>T</mi>\n <mi>m</mi>\n </msup>\n <annotation>$T^m$</annotation>\n </semantics></math> acting freely on <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>K</mi>\n </msub>\n <annotation>$\\mathcal {Z}_K$</annotation>\n </semantics></math>. The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>−</mo>\n <mi>n</mi>\n <mo>⩽</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$m-n\\leqslant 4$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices\",\"authors\":\"Suyoung Choi,&nbsp;Hyeontae Jang,&nbsp;Mathieu Vallée\",\"doi\":\"10.1112/jlms.70231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> be an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n-1)$</annotation>\\n </semantics></math>-dimensional piecewise linear sphere on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mi>m</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$[m]$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>⩽</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$m\\\\leqslant n+4$</annotation>\\n </semantics></math>. There are a canonical action of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>-dimensional torus <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$T^m$</annotation>\\n </semantics></math> on the moment-angle complex <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n <annotation>$\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>, and a canonical action of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>Z</mi>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msubsup>\\n <annotation>$\\\\mathbb {Z}_2^m$</annotation>\\n </semantics></math> on the real moment-angle complex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbb {R}\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathbb {Z}_2$</annotation>\\n </semantics></math> is the additive group with two elements. We prove that any subgroup of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>Z</mi>\\n <mn>2</mn>\\n <mi>m</mi>\\n </msubsup>\\n <annotation>$\\\\mathbb {Z}_2^m$</annotation>\\n </semantics></math> acting freely on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathbb {R}\\\\mathcal {Z}_K$</annotation>\\n </semantics></math> is induced by a subtorus of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>T</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$T^m$</annotation>\\n </semantics></math> acting freely on <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>K</mi>\\n </msub>\\n <annotation>$\\\\mathcal {Z}_K$</annotation>\\n </semantics></math>. The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>−</mo>\\n <mi>n</mi>\\n <mo>⩽</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$m-n\\\\leqslant 4$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70231\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70231","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设K $K$为[m] $[m]$上的(n−1)$(n-1)$维分段线性球,其中m≤n + 4 $m\leqslant n+4$。存在m $m$维环面T m $T^m$对矩角复合体Z K $\mathcal {Z}_K$的正则作用,z2 m $\mathbb {Z}_2^m$对实矩角复合体R zk $\mathbb {R}\mathcal {Z}_K$的正则作用;其中z2 $\mathbb {Z}_2$是两个元素的加性基团。我们证明了自由作用于rzk$\mathbb {R}\mathcal {Z}_K$上的z2m $\mathbb {Z}_2^m$的任何子群都是由tm的一个子环诱导的$T^m$自由作用于zk $\mathcal {Z}_K$。该证明主要利用了一种适当改进的环向楔归纳法和通用复合体的组合结构。作为副产物,这解决了m−n≤4 $m-n\leqslant 4$的分段线性球的环面提升问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices

Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices

Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices

Toric wedge induction and toric lifting property for piecewise linear spheres with few vertices

Let K $K$ be an ( n 1 ) $(n-1)$ -dimensional piecewise linear sphere on [ m ] $[m]$ , where m n + 4 $m\leqslant n+4$ . There are a canonical action of m $m$ -dimensional torus T m $T^m$ on the moment-angle complex Z K $\mathcal {Z}_K$ , and a canonical action of Z 2 m $\mathbb {Z}_2^m$ on the real moment-angle complex R Z K $\mathbb {R}\mathcal {Z}_K$ , where Z 2 $\mathbb {Z}_2$ is the additive group with two elements. We prove that any subgroup of Z 2 m $\mathbb {Z}_2^m$ acting freely on R Z K $\mathbb {R}\mathcal {Z}_K$ is induced by a subtorus of T m $T^m$ acting freely on Z K $\mathcal {Z}_K$ . The proof primarily utilizes a suitably modified method of toric wedge induction and the combinatorial structure of the universal complex. As a byproduct, this solves the toric lifting problem for piecewise linear spheres with m n 4 $m-n\leqslant 4$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信