非平凡Boyd指标对称赋范理想上的算子- lipschitz函数

IF 1.2 2区 数学 Q1 MATHEMATICS
E. Kissin, D. Potapov, V. Shulman, F. Sukochev
{"title":"非平凡Boyd指标对称赋范理想上的算子- lipschitz函数","authors":"E. Kissin,&nbsp;D. Potapov,&nbsp;V. Shulman,&nbsp;F. Sukochev","doi":"10.1112/jlms.70218","DOIUrl":null,"url":null,"abstract":"<p>We show that if the Boyd indices of a symmetrically normed ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$B(H)$</annotation>\n </semantics></math> are nontrivial (differ from 1 and <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>), then for any Lipschitz function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>, the map <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>↦</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N\\mapsto f(N)$</annotation>\n </semantics></math> is Lipschitz on the set of normal operators with respect to the norm <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mi>J</mi>\n </msub>\n <annotation>$\\Vert \\cdot \\Vert _{J}$</annotation>\n </semantics></math>. In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>-stability with respect to an ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>: if a normal operator <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> is perturbed by an operator <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$X\\in J$</annotation>\n </semantics></math> in such a way that the operator <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$N+X$</annotation>\n </semantics></math> is normal, then <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$f(N+X)-f(N)\\in J$</annotation>\n </semantics></math>. As applications, we present various results on Gateaux and Frechet <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices\",\"authors\":\"E. Kissin,&nbsp;D. Potapov,&nbsp;V. Shulman,&nbsp;F. Sukochev\",\"doi\":\"10.1112/jlms.70218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if the Boyd indices of a symmetrically normed ideal <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$B(H)$</annotation>\\n </semantics></math> are nontrivial (differ from 1 and <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>), then for any Lipschitz function <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbb {C}$</annotation>\\n </semantics></math>, the map <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>↦</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N\\\\mapsto f(N)$</annotation>\\n </semantics></math> is Lipschitz on the set of normal operators with respect to the norm <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <mi>J</mi>\\n </msub>\\n <annotation>$\\\\Vert \\\\cdot \\\\Vert _{J}$</annotation>\\n </semantics></math>. In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math>-stability with respect to an ideal <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math>: if a normal operator <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> is perturbed by an operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n <annotation>$X\\\\in J$</annotation>\\n </semantics></math> in such a way that the operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$N+X$</annotation>\\n </semantics></math> is normal, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n <annotation>$f(N+X)-f(N)\\\\in J$</annotation>\\n </semantics></math>. As applications, we present various results on Gateaux and Frechet <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70218\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了如果B (H) $B(H)$的对称赋范理想J $J$的Boyd指标是非平凡的(不同于1和∞$\infty$),对于任意Lipschitz函数f $f$在C上$\mathbb {C}$,映射N∈f (N) $N\mapsto f(N)$是关于范数∥·∥J $\Vert \cdot \Vert _{J}$的正规算子集合上的Lipschitz。特别地,我们研究了Fuglede定理的某些增强形式所成立的理想;这对于处理普通操作符的函数是必要的。我们还考虑具有J $J$ -相对于理想J $J$的稳定性的函数:如果一个正常算子N $N$被一个算子X∈J $X\in J$扰动,使得算子N + X $N+X$正常,则f (N + X)−f (N)∈J $f(N+X)-f(N)\in J$。作为应用,我们给出了关于函数的Gateaux和Frechet J $J$ -可微性,以及Lipschitz函数在导数域上的作用的各种结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices

Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices

Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices

Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices

We show that if the Boyd indices of a symmetrically normed ideal J $J$ of B ( H ) $B(H)$ are nontrivial (differ from 1 and $\infty$ ), then for any Lipschitz function f $f$ on C $\mathbb {C}$ , the map N f ( N ) $N\mapsto f(N)$ is Lipschitz on the set of normal operators with respect to the norm · J $\Vert \cdot \Vert _{J}$ . In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of J $J$ -stability with respect to an ideal J $J$ : if a normal operator N $N$ is perturbed by an operator X J $X\in J$ in such a way that the operator N + X $N+X$ is normal, then f ( N + X ) f ( N ) J $f(N+X)-f(N)\in J$ . As applications, we present various results on Gateaux and Frechet J $J$ -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信