{"title":"非平凡Boyd指标对称赋范理想上的算子- lipschitz函数","authors":"E. Kissin, D. Potapov, V. Shulman, F. Sukochev","doi":"10.1112/jlms.70218","DOIUrl":null,"url":null,"abstract":"<p>We show that if the Boyd indices of a symmetrically normed ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>B</mi>\n <mo>(</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$B(H)$</annotation>\n </semantics></math> are nontrivial (differ from 1 and <span></span><math>\n <semantics>\n <mi>∞</mi>\n <annotation>$\\infty$</annotation>\n </semantics></math>), then for any Lipschitz function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbb {C}$</annotation>\n </semantics></math>, the map <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>↦</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N\\mapsto f(N)$</annotation>\n </semantics></math> is Lipschitz on the set of normal operators with respect to the norm <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>∥</mo>\n <mo>·</mo>\n <mo>∥</mo>\n </mrow>\n <mi>J</mi>\n </msub>\n <annotation>$\\Vert \\cdot \\Vert _{J}$</annotation>\n </semantics></math>. In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>-stability with respect to an ideal <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math>: if a normal operator <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> is perturbed by an operator <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$X\\in J$</annotation>\n </semantics></math> in such a way that the operator <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$N+X$</annotation>\n </semantics></math> is normal, then <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mi>f</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>J</mi>\n </mrow>\n <annotation>$f(N+X)-f(N)\\in J$</annotation>\n </semantics></math>. As applications, we present various results on Gateaux and Frechet <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices\",\"authors\":\"E. Kissin, D. Potapov, V. Shulman, F. Sukochev\",\"doi\":\"10.1112/jlms.70218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if the Boyd indices of a symmetrically normed ideal <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>B</mi>\\n <mo>(</mo>\\n <mi>H</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$B(H)$</annotation>\\n </semantics></math> are nontrivial (differ from 1 and <span></span><math>\\n <semantics>\\n <mi>∞</mi>\\n <annotation>$\\\\infty$</annotation>\\n </semantics></math>), then for any Lipschitz function <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbb {C}$</annotation>\\n </semantics></math>, the map <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>↦</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N\\\\mapsto f(N)$</annotation>\\n </semantics></math> is Lipschitz on the set of normal operators with respect to the norm <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>∥</mo>\\n <mo>·</mo>\\n <mo>∥</mo>\\n </mrow>\\n <mi>J</mi>\\n </msub>\\n <annotation>$\\\\Vert \\\\cdot \\\\Vert _{J}$</annotation>\\n </semantics></math>. In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math>-stability with respect to an ideal <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math>: if a normal operator <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> is perturbed by an operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n <annotation>$X\\\\in J$</annotation>\\n </semantics></math> in such a way that the operator <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$N+X$</annotation>\\n </semantics></math> is normal, then <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n <mo>∈</mo>\\n <mi>J</mi>\\n </mrow>\\n <annotation>$f(N+X)-f(N)\\\\in J$</annotation>\\n </semantics></math>. As applications, we present various results on Gateaux and Frechet <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70218\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70218","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Operator–Lipschitz functions on symmetrically normed ideals with nontrivial Boyd indices
We show that if the Boyd indices of a symmetrically normed ideal of are nontrivial (differ from 1 and ), then for any Lipschitz function on , the map is Lipschitz on the set of normal operators with respect to the norm . In particular, we study ideals for which some enhanced forms of the Fuglede Theorem hold; this is necessary for the work with functions of normal operators. We also consider functions that have the property of -stability with respect to an ideal : if a normal operator is perturbed by an operator in such a way that the operator is normal, then . As applications, we present various results on Gateaux and Frechet -differentiability of functions, and on the action of Lipschitz functions on the domains of derivations.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.