Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen
{"title":"On two-generator subgroups of mapping torus groups","authors":"Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen","doi":"10.1112/jlms.70226","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>⟨</mo>\n <mi>F</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mi>t</mi>\n <mi>x</mi>\n <msup>\n <mi>t</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <mi>F</mi>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$G_\\varphi =\\langle F, t| t x t^{-1} =\\varphi (x), x\\in F\\rangle$</annotation>\n </semantics></math> is the mapping torus group of an injective endomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>F</mi>\n <mo>→</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$\\varphi: F\\rightarrow F$</annotation>\n </semantics></math> of a free group <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> (of possibly infinite rank), then every two-generator subgroup <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or a (finitary) sub-mapping torus. As an application we show that if <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>∈</mo>\n <mtext>Out</mtext>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi \\in \\mbox{Out}(F_r)$</annotation>\n </semantics></math> is a fully irreducible atoroidal automorphism, then every two-generator subgroup of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or has finite index in <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that if is the mapping torus group of an injective endomorphism of a free group (of possibly infinite rank), then every two-generator subgroup of is either free or a (finitary) sub-mapping torus. As an application we show that if is a fully irreducible atoroidal automorphism, then every two-generator subgroup of is either free or has finite index in .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.