On two-generator subgroups of mapping torus groups

IF 1.2 2区 数学 Q1 MATHEMATICS
Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen
{"title":"On two-generator subgroups of mapping torus groups","authors":"Naomi Andrew,&nbsp;Edgar A. Bering IV,&nbsp;Ilya Kapovich,&nbsp;Stefano Vidussi,&nbsp;Peter Shalen","doi":"10.1112/jlms.70226","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>⟨</mo>\n <mi>F</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mi>t</mi>\n <mi>x</mi>\n <msup>\n <mi>t</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <mi>F</mi>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$G_\\varphi =\\langle F, t| t x t^{-1} =\\varphi (x), x\\in F\\rangle$</annotation>\n </semantics></math> is the mapping torus group of an injective endomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>F</mi>\n <mo>→</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$\\varphi: F\\rightarrow F$</annotation>\n </semantics></math> of a free group <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> (of possibly infinite rank), then every two-generator subgroup <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or a (finitary) sub-mapping torus. As an application we show that if <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>∈</mo>\n <mtext>Out</mtext>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi \\in \\mbox{Out}(F_r)$</annotation>\n </semantics></math> is a fully irreducible atoroidal automorphism, then every two-generator subgroup of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or has finite index in <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if G φ = F , t | t x t 1 = φ ( x ) , x F $G_\varphi =\langle F, t| t x t^{-1} =\varphi (x), x\in F\rangle$ is the mapping torus group of an injective endomorphism φ : F F $\varphi: F\rightarrow F$ of a free group F $F$ (of possibly infinite rank), then every two-generator subgroup H $H$ of G φ $G_\varphi$ is either free or a (finitary) sub-mapping torus. As an application we show that if φ Out ( F r ) $\varphi \in \mbox{Out}(F_r)$ is a fully irreducible atoroidal automorphism, then every two-generator subgroup of G φ $G_\varphi$ is either free or has finite index in G φ $G_\varphi$ .

Abstract Image

Abstract Image

Abstract Image

关于映射环面群的二生成子群
我们证明如果G φ =⟨F,T | T x T−1 = φ (x),x∈F⟩$G_\varphi =\langle F, t| t x t^{-1} =\varphi (x), x\in F\rangle$是一个内射自同态φ的映射环面群:F→F $\varphi: F\rightarrow F$的自由群F $F$(可能是无限秩),则G φ $G_\varphi$的每个二生成子群H $H$要么是自由的,要么是一个(有限的)子映射环面。作为一个应用,我们证明了如果φ∈Out (F r) $\varphi \in \mbox{Out}(F_r)$是一个完全不可约的自同构,则G φ $G_\varphi$的每一个二生成子群要么是自由的,要么在G φ $G_\varphi$上有有限的索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信