Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen
{"title":"关于映射环面群的二生成子群","authors":"Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen","doi":"10.1112/jlms.70226","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <mo>=</mo>\n <mrow>\n <mo>⟨</mo>\n <mi>F</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>|</mo>\n <mi>t</mi>\n <mi>x</mi>\n <msup>\n <mi>t</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>=</mo>\n <mi>φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <mi>F</mi>\n <mo>⟩</mo>\n </mrow>\n </mrow>\n <annotation>$G_\\varphi =\\langle F, t| t x t^{-1} =\\varphi (x), x\\in F\\rangle$</annotation>\n </semantics></math> is the mapping torus group of an injective endomorphism <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>:</mo>\n <mi>F</mi>\n <mo>→</mo>\n <mi>F</mi>\n </mrow>\n <annotation>$\\varphi: F\\rightarrow F$</annotation>\n </semantics></math> of a free group <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math> (of possibly infinite rank), then every two-generator subgroup <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or a (finitary) sub-mapping torus. As an application we show that if <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n <mo>∈</mo>\n <mtext>Out</mtext>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\varphi \\in \\mbox{Out}(F_r)$</annotation>\n </semantics></math> is a fully irreducible atoroidal automorphism, then every two-generator subgroup of <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math> is either free or has finite index in <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mi>φ</mi>\n </msub>\n <annotation>$G_\\varphi$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On two-generator subgroups of mapping torus groups\",\"authors\":\"Naomi Andrew, Edgar A. Bering IV, Ilya Kapovich, Stefano Vidussi, Peter Shalen\",\"doi\":\"10.1112/jlms.70226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>G</mi>\\n <mi>φ</mi>\\n </msub>\\n <mo>=</mo>\\n <mrow>\\n <mo>⟨</mo>\\n <mi>F</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>|</mo>\\n <mi>t</mi>\\n <mi>x</mi>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mo>=</mo>\\n <mi>φ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <mi>F</mi>\\n <mo>⟩</mo>\\n </mrow>\\n </mrow>\\n <annotation>$G_\\\\varphi =\\\\langle F, t| t x t^{-1} =\\\\varphi (x), x\\\\in F\\\\rangle$</annotation>\\n </semantics></math> is the mapping torus group of an injective endomorphism <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>:</mo>\\n <mi>F</mi>\\n <mo>→</mo>\\n <mi>F</mi>\\n </mrow>\\n <annotation>$\\\\varphi: F\\\\rightarrow F$</annotation>\\n </semantics></math> of a free group <span></span><math>\\n <semantics>\\n <mi>F</mi>\\n <annotation>$F$</annotation>\\n </semantics></math> (of possibly infinite rank), then every two-generator subgroup <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mi>φ</mi>\\n </msub>\\n <annotation>$G_\\\\varphi$</annotation>\\n </semantics></math> is either free or a (finitary) sub-mapping torus. As an application we show that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>φ</mi>\\n <mo>∈</mo>\\n <mtext>Out</mtext>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>r</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\varphi \\\\in \\\\mbox{Out}(F_r)$</annotation>\\n </semantics></math> is a fully irreducible atoroidal automorphism, then every two-generator subgroup of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mi>φ</mi>\\n </msub>\\n <annotation>$G_\\\\varphi$</annotation>\\n </semantics></math> is either free or has finite index in <span></span><math>\\n <semantics>\\n <msub>\\n <mi>G</mi>\\n <mi>φ</mi>\\n </msub>\\n <annotation>$G_\\\\varphi$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70226\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70226","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明如果G φ =⟨F,T | T x T−1 = φ (x),x∈F⟩$G_\varphi =\langle F, t| t x t^{-1} =\varphi (x), x\in F\rangle$是一个内射自同态φ的映射环面群:F→F $\varphi: F\rightarrow F$的自由群F $F$(可能是无限秩),则G φ $G_\varphi$的每个二生成子群H $H$要么是自由的,要么是一个(有限的)子映射环面。作为一个应用,我们证明了如果φ∈Out (F r) $\varphi \in \mbox{Out}(F_r)$是一个完全不可约的自同构,则G φ $G_\varphi$的每一个二生成子群要么是自由的,要么在G φ $G_\varphi$上有有限的索引。
On two-generator subgroups of mapping torus groups
We prove that if is the mapping torus group of an injective endomorphism of a free group (of possibly infinite rank), then every two-generator subgroup of is either free or a (finitary) sub-mapping torus. As an application we show that if is a fully irreducible atoroidal automorphism, then every two-generator subgroup of is either free or has finite index in .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.