Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
Generalising Collins' theorem 推广柯林斯定理
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70240
James Howie, Hamish Short
{"title":"Generalising Collins' theorem","authors":"James Howie,&nbsp;Hamish Short","doi":"10.1112/jlms.70240","DOIUrl":"10.1112/jlms.70240","url":null,"abstract":"<p>We generalise a result of D. J. Collins on intersections of conjugates of Magnus subgroups of one-relator groups to the context of one-relator products of locally indicable groups.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supersonic flows of the Euler–Poisson system with nonzero vorticities in three-dimensional cylinders 三维圆柱体中非零涡度欧拉-泊松系统的超音速流动
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70233
Myoungjean Bae, Hyangdong Park
{"title":"Supersonic flows of the Euler–Poisson system with nonzero vorticities in three-dimensional cylinders","authors":"Myoungjean Bae,&nbsp;Hyangdong Park","doi":"10.1112/jlms.70233","DOIUrl":"10.1112/jlms.70233","url":null,"abstract":"<p>We prove the unique existence of three-dimensional supersonic solutions to the steady Euler–Poisson system in cylindrical nozzles. First, we establish the unique existence of irrotational solutions in a cylindrical nozzle with an arbitrary cross-section with using weighted Sobolev norms. Then, we establish the unique existence of axisymmetric solutions with nonzero vorticity in a circular cylinder. Several technical issues, including the issue of nonlinear hyperbolic–elliptic mixed type partial differential equation (PDE) system and corner singularities in a Lipschitz domain, are carefully addressed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peculiar behavior of the principal Laplacian eigenvalue for large negative Robin parameters 大负Robin参数下主拉普拉斯特征值的特殊行为
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70242
Charlotte Dietze, Konstantin Pankrashkin
{"title":"Peculiar behavior of the principal Laplacian eigenvalue for large negative Robin parameters","authors":"Charlotte Dietze,&nbsp;Konstantin Pankrashkin","doi":"10.1112/jlms.70242","DOIUrl":"10.1112/jlms.70242","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Omega subset mathbb {R}^n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ngeqslant 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a bounded Lipschitz domain with outer unit normal &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;ν&lt;/mi&gt;\u0000 &lt;annotation&gt;$nu$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$alpha in mathbb {R}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;annotation&gt;$R_Omega ^alpha$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be the Laplacian in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;annotation&gt;$Omega$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with the Robin boundary condition &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;ν&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$partial _nu u+alpha u=0$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, and denote by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$E(R^alpha _Omega)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: &lt;i&gt;Does the limit of the ratio&lt;/i&gt; &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;E&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite generation of split- F -regular $text{split-}Ftext{-regular}$ monoid algebras split- F -regular $text{split-}Ftext{-regular}$一元代数的有限生成
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70234
Rankeya Datta, Karl Schwede, Kevin Tucker
{"title":"Finite generation of \u0000 \u0000 \u0000 split-\u0000 F\u0000 -regular\u0000 \u0000 $text{split-}Ftext{-regular}$\u0000 monoid algebras","authors":"Rankeya Datta,&nbsp;Karl Schwede,&nbsp;Kevin Tucker","doi":"10.1112/jlms.70234","DOIUrl":"10.1112/jlms.70234","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a submonoid of a free Abelian group of finite rank. We show that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a field of prime characteristic such that the monoid &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-algebra &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$k[S]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;split-&lt;/mtext&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mtext&gt;-regular&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$text{split-}Ftext{-regular}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$k[S]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a finitely generated &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-algebra, or equivalently, that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a finitely generated monoid. Split-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;annotation&gt;$F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-regular rings are possibly non-Noetherian or non-&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;annotation&gt;$F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-finite rings that satisfy the defining property of strongly &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;annotation&gt;$F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-regular rings from the theories of tight closure and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;annotation&gt;$F$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-singularities. Our finite generation result provides evidence in favor of the conjecture that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtext&gt;split-&lt;/mtext&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;mtext&gt;-regular&lt;/mtext&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$text{split-}Ftext{-regular}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; rings in funct","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete Laplacians — Spherical and hyperbolic 离散拉普拉斯-球面和双曲
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70235
Ivan Izmestiev, Wai Yeung Lam
{"title":"Discrete Laplacians — Spherical and hyperbolic","authors":"Ivan Izmestiev,&nbsp;Wai Yeung Lam","doi":"10.1112/jlms.70235","DOIUrl":"10.1112/jlms.70235","url":null,"abstract":"<p>The discrete Laplacian on Euclidean triangulated surfaces is a well-established notion. We introduce discrete Laplacians on spherical and hyperbolic triangulated surfaces. On the one hand, our definitions are close to the Euclidean one in that the edge weights contain the cotangents of certain combinations of angles and are non-negative if and only if the triangulation is Delaunay. On the other hand, these discretizations are structure-preserving in several respects. We prove that the area of a convex polyhedron can be written in terms of the discrete spherical Laplacian of the support function, whose expression is the same as the area of a smooth convex body in terms of the usual spherical Laplacian. We show that the conformal factors of discrete conformal vector fields on a triangulated surface of curvature <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mo>{</mo>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 <annotation>$k in lbrace -1,1rbrace$</annotation>\u0000 </semantics></math> are <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$-2k$</annotation>\u0000 </semantics></math>-eigenfunctions of our discrete Laplacians, exactly as in the smooth setting. The discrete conformality can be understood here both in the sense of the vertex scaling and in the sense of circle patterns. Finally, we connect the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$-2k$</annotation>\u0000 </semantics></math>-eigenfunctions to infinitesimal isometric deformations of a polyhedron inscribed into corresponding quadrics.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The combined singular limits of compressible Oldroyd-B model at low Mach and Weissenberg numbers 低马赫数和Weissenberg数下可压缩Oldroyd-B模型的组合奇异极限
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70243
Jianwen Zhang, Minghui Zhong
{"title":"The combined singular limits of compressible Oldroyd-B model at low Mach and Weissenberg numbers","authors":"Jianwen Zhang,&nbsp;Minghui Zhong","doi":"10.1112/jlms.70243","DOIUrl":"10.1112/jlms.70243","url":null,"abstract":"<p>This paper is concerned with an initial-boundary value problem of the compressible Oldroyd-B (OB) model on 3D bounded and smooth domain subject to Navier's slip boundary conditions. The combined singular limits at low Mach and Weissenberg numbers are justified for the global smooth solutions with ill-prepared initial data and non-small coupling parameter. It is shown that as the Mach number and the Weissenberg number tend to zero, the solution of the compressible OB model for viscoelastic fluids converges to that of the incompressible Navier–Stokes equations for Newtonian fluids. The proofs are based on some subtle weighted estimates in Sobolev spaces. The different weights of various norms need to be chosen carefully such that the large singular operators can be well balanced and the linear interactions between the deformation and the divergence of extra stress tensor can be mutually cancelled.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The De Giorgi method for local and nonlocal systems 局部和非局部系统的De Giorgi方法
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70237
Linus Behn, Lars Diening, Simon Nowak, Toni Scharle
{"title":"The De Giorgi method for local and nonlocal systems","authors":"Linus Behn,&nbsp;Lars Diening,&nbsp;Simon Nowak,&nbsp;Toni Scharle","doi":"10.1112/jlms.70237","DOIUrl":"10.1112/jlms.70237","url":null,"abstract":"<p>We extend the De Giorgi iteration technique to the vectorial setting. For this we replace the usual scalar truncation operator by a vectorial shortening operator. As an application, we prove local boundedness for local and nonlocal nonlinear systems. Furthermore, we show convex hull properties, which are a generalization of the maximum principle to the case of systems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the dimension of orthogonal projections of self-similar measures 关于自相似测度的正交投影的维数
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-22 DOI: 10.1112/jlms.70245
Amir Algom, Pablo Shmerkin
{"title":"On the dimension of orthogonal projections of self-similar measures","authors":"Amir Algom,&nbsp;Pablo Shmerkin","doi":"10.1112/jlms.70245","DOIUrl":"10.1112/jlms.70245","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>ν</mi>\u0000 <annotation>$nu$</annotation>\u0000 </semantics></math> be a self-similar measure on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 2$</annotation>\u0000 </semantics></math>, and let <span></span><math>\u0000 <semantics>\u0000 <mi>π</mi>\u0000 <annotation>$pi$</annotation>\u0000 </semantics></math> be an orthogonal projection onto a <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on <span></span><math>\u0000 <semantics>\u0000 <mi>π</mi>\u0000 <annotation>$pi$</annotation>\u0000 </semantics></math>, and show that it ensures that the dimension of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>π</mi>\u0000 <mi>ν</mi>\u0000 </mrow>\u0000 <annotation>$pi nu$</annotation>\u0000 </semantics></math> is preserved; this significantly refines previous results by Hochman–Shmerkin (2012) and Falconer–Jin (2014), and is sharp for projections to lines and hyperplanes. A key ingredient in the proof is an application of a restricted projection theorem of Gan–Guo–Wang (2024).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70245","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres 关于闭球和闭球的一维多项式、正则和正则象
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-20 DOI: 10.1112/jlms.70241
José F. Fernando
{"title":"On the one-dimensional polynomial, regular, and regulous images of closed balls and spheres","authors":"José F. Fernando","doi":"10.1112/jlms.70241","DOIUrl":"10.1112/jlms.70241","url":null,"abstract":"&lt;p&gt;We present a full geometric characterization of the one-dimensional (semialgebraic) images &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of either &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional closed balls &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$overline{{mathcal {B}}}_nsubset {mathbb {R}}^n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; or &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional spheres &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${mathbb {S}}^nsubset {mathbb {R}}^{n+1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; under polynomial, regular, and regulous maps for some &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ngeqslant 1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In all the previous cases, one can find a new polynomial, regular, or regulous map with domain either &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;¯&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70241","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144666434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some applications of abelianization in Gromov–Witten theory 阿贝尔化在Gromov-Witten理论中的一些应用
IF 1.2 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2025-07-17 DOI: 10.1112/jlms.70236
Nawaz Sultani, Rachel Webb
{"title":"Some applications of abelianization in Gromov–Witten theory","authors":"Nawaz Sultani,&nbsp;Rachel Webb","doi":"10.1112/jlms.70236","DOIUrl":"10.1112/jlms.70236","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math> be a complex reductive group and let <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> be two linear representations of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>. Let <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> be a complete intersection in <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> equal to the zero locus of a <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-equivariant section of the trivial bundle <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mo>×</mo>\u0000 <mi>X</mi>\u0000 <mo>→</mo>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$E times X rightarrow X$</annotation>\u0000 </semantics></math>. We explain some general techniques for using quasimap formulas to compute useful <span></span><math>\u0000 <semantics>\u0000 <mi>I</mi>\u0000 <annotation>$I$</annotation>\u0000 </semantics></math>-functions of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Y</mi>\u0000 <mrow>\u0000 <mo>/</mo>\u0000 <mo>/</mo>\u0000 </mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$Ymathord {/hspace{-3.33328pt}/}G$</annotation>\u0000 </semantics></math>. We work several explicit examples, including a rigorous derivation of the conjectural quantum period in Oneto and Petracci (Adv. Geom. <b>18</b> (2018), no. 3, 303–336).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144647281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信