{"title":"Geometry of Selberg's bisectors in the symmetric space \u0000 \u0000 \u0000 S\u0000 L\u0000 (\u0000 n\u0000 ,\u0000 R\u0000 )\u0000 /\u0000 S\u0000 O\u0000 (\u0000 n\u0000 ,\u0000 R\u0000 )\u0000 \u0000 $SL(n,mathbb {R})/SO(n,mathbb {R})$","authors":"Yukun Du","doi":"10.1112/jlms.12992","DOIUrl":"https://doi.org/10.1112/jlms.12992","url":null,"abstract":"<p>I study several problems about the symmetric space associated with the Lie group <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>. These problems are connected to an algorithm based on Poincaré's Fundamental Polyhedron Theorem, designed to determine generalized geometric finiteness properties for subgroups of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>. The algorithm is analogous to the original one in hyperbolic spaces, while the Riemannian distance is replaced by an <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(n,mathbb {R})$</annotation>\u0000 </semantics></math>-invariant premetric. The main results of this paper are twofold. In the first part, I focus on questions that occurred in generalizing Poincaré's Algorithm to my symmetric space. I describe and implement an algorithm that computes the face-poset structure of finitely sided polyhedra, and construct an angle-like function between hyperplanes. In the second part, I study further questions related to hyperplanes and Dirichlet–Selberg domains in my symmetric space. I establish several criteria for the disjointness of hyperplanes and classify particular Abelian subgroups of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mn>3</mn>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$SL(3,mathbb {R})$</annotation>\u0000 </semantics></math> based on whether their Dirichlet–Selberg domains are finitely sided or not.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}