Journal of the London Mathematical Society-Second Series最新文献

筛选
英文 中文
ℓ p $ell ^p$ metrics on cell complexes
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-27 DOI: 10.1112/jlms.70062
Thomas Haettel, Nima Hoda, Harry Petyt
{"title":"ℓ\u0000 p\u0000 \u0000 $ell ^p$\u0000 metrics on cell complexes","authors":"Thomas Haettel,&nbsp;Nima Hoda,&nbsp;Harry Petyt","doi":"10.1112/jlms.70062","DOIUrl":"https://doi.org/10.1112/jlms.70062","url":null,"abstract":"<p>Motivated by the observation that groups can be effectively studied using metric spaces modelled on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$ell ^1$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$ell ^2$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$ell ^infty$</annotation>\u0000 </semantics></math> geometry, we consider cell complexes equipped with an <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$ell ^p$</annotation>\u0000 </semantics></math> metric for arbitrary <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>. Under weak conditions that can be checked locally, we establish non-positive curvature properties of these complexes, such as Busemann-convexity and strong bolicity. We also provide detailed information on the geodesics of these metrics in the special case of CAT(0) cube complexes.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Lane–Emden conjecture with convolution part
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-26 DOI: 10.1112/jlms.70064
Lele Du, Xiang Li, Minbo Yang
{"title":"On the Lane–Emden conjecture with convolution part","authors":"Lele Du,&nbsp;Xiang Li,&nbsp;Minbo Yang","doi":"10.1112/jlms.70064","DOIUrl":"https://doi.org/10.1112/jlms.70064","url":null,"abstract":"<p>We study the Hartree type Lane–Emden conjecture, which states the nonexistence of the positive classical solutions for the following Hartree type system \u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On noncommutative leapfrog map
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-24 DOI: 10.1112/jlms.70063
Bao Wang, Shi-Hao Li
{"title":"On noncommutative leapfrog map","authors":"Bao Wang,&nbsp;Shi-Hao Li","doi":"10.1112/jlms.70063","DOIUrl":"https://doi.org/10.1112/jlms.70063","url":null,"abstract":"<p>We investigate the integrability of the noncommutative leapfrog map in this paper. First, we derive the explicit formula for the noncommutative leapfrog map and corresponding discrete zero-curvature equation by employing the concept of noncommutative cross-ratio. Then we revisit this discrete map, as well as its continuous limit, from the perspective of noncommutative Laurent bi-orthogonal polynomials. Finally, the Poisson structure for this discrete noncommutative map is formulated with the help of a noncommutative network. Through these constructions, we aim to enhance our understanding of the integrability properties of the noncommutative leapfrog map and its related mathematical structures.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root of unity quantum cluster algebras and discriminants
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-23 DOI: 10.1112/jlms.70060
Bach Nguyen, Kurt Trampel, Milen Yakimov
{"title":"Root of unity quantum cluster algebras and discriminants","authors":"Bach Nguyen,&nbsp;Kurt Trampel,&nbsp;Milen Yakimov","doi":"10.1112/jlms.70060","DOIUrl":"https://doi.org/10.1112/jlms.70060","url":null,"abstract":"<p>We describe a connection between the subjects of cluster algebras, polynomial identity algebras, and discriminants. For this, we define the notion of root of unity quantum cluster algebras and prove that they are polynomial identity algebras. Inside each such algebra we construct a (large) canonical central subalgebra, which can be viewed as a far reaching generalization of the central subalgebras of big quantum groups constructed by De Concini, Kac, and Procesi and used in representation theory. Each such central subalgebra is proved to be isomorphic to the underlying classical cluster algebra of geometric type. When the root of unity quantum cluster algebra is free over its central subalgebra, we prove that the discriminant of the pair is a product of powers of the frozen variables times an integer. An extension of this result is also proved for the discriminants of all subalgebras generated by the cluster variables of nerves in the exchange graph. These results can be used for the effective computation of discriminants. As an application we obtain an explicit formula for the discriminant of the integral form over <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Z</mi>\u0000 <mo>[</mo>\u0000 <mi>ε</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>${mathbb {Z}}[varepsilon]$</annotation>\u0000 </semantics></math> of each quantum unipotent cell of De Concini, Kac, and Procesi for arbitrary symmetrizable Kac–Moody algebras, where <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math> is a root of unity.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois groups of random polynomials over the rational function field
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-23 DOI: 10.1112/jlms.70061
Alexei Entin
{"title":"Galois groups of random polynomials over the rational function field","authors":"Alexei Entin","doi":"10.1112/jlms.70061","DOIUrl":"https://doi.org/10.1112/jlms.70061","url":null,"abstract":"<p>For a fixed prime power <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math> and natural number <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>, we consider a random polynomial\u0000\u0000 </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Groups acting on veering pairs and Kleinian groups
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-23 DOI: 10.1112/jlms.70052
Hyungryul Baik, Hongtaek Jung, KyeongRo Kim
{"title":"Groups acting on veering pairs and Kleinian groups","authors":"Hyungryul Baik,&nbsp;Hongtaek Jung,&nbsp;KyeongRo Kim","doi":"10.1112/jlms.70052","DOIUrl":"https://doi.org/10.1112/jlms.70052","url":null,"abstract":"<p>We show that some subgroups of the orientation-preserving circle homeomorphism group with invariant veering pairs of laminations are hyperbolic 3-orbifold groups. On the way, we show that from a veering pair of laminations, one can construct a loom space (in the sense of Schleimer–Segerman) as a quotient. Our approach does not assume the existence of any 3-manifold to begin with, so this is a geometrization-type result, and supersedes some of the results regarding the relation among veering triangulations, pseudo-Anosov flows, taut foliations in the literature.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Poincaré-extended a b $mathbf {a}mathbf {b}$ -index 庞加莱姆-扩展了一个b $mathbf {a}mathbf {b}$ -索引
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-20 DOI: 10.1112/jlms.70054
Galen Dorpalen-Barry, Joshua Maglione, Christian Stump
{"title":"The Poincaré-extended \u0000 \u0000 \u0000 a\u0000 b\u0000 \u0000 $mathbf {a}mathbf {b}$\u0000 -index","authors":"Galen Dorpalen-Barry,&nbsp;Joshua Maglione,&nbsp;Christian Stump","doi":"10.1112/jlms.70054","DOIUrl":"https://doi.org/10.1112/jlms.70054","url":null,"abstract":"<p>Motivated by a conjecture concerning Igusa local zeta functions for intersection posets of hyperplane arrangements, we introduce and study the <i>Poincaré-extended</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {a}mathbf {b}$</annotation>\u0000 </semantics></math><i>-index</i>, which generalizes both the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {a}mathbf {b}$</annotation>\u0000 </semantics></math>-index and the Poincaré polynomial. For posets admitting <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math>-labelings, we give a combinatorial description of the coefficients of the extended <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {a}mathbf {b}$</annotation>\u0000 </semantics></math>-index, proving their nonnegativity. In the case of intersection posets of hyperplane arrangements, we prove the above conjecture of the second author and Voll as well as another conjecture of the second author and Kühne. We also define the pullback <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mi>b</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {a}mathbf {b}$</annotation>\u0000 </semantics></math>-index, generalizing the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>c</mi>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation>$mathbf {c}mathbf {d}$</annotation>\u0000 </semantics></math>-index of face posets for oriented matroids. Our results recover, generalize, and unify results from Billera–Ehrenborg–Readdy, Bergeron–Mykytiuk–Sottile–van Willigenburg, Saliola–Thomas, and Ehrenborg. This connection allows us to translate our results into the language of quasisymmetric functions, and — in the special case of symmetric functions — pose a conjecture about Schur positivity. This conjecture was strengthened and proved by Ricky Liu, and the proof appears as an appendix.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ekström–Persson conjecture regarding random covering sets 关于随机覆盖集的Ekström-Persson猜想
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-20 DOI: 10.1112/jlms.70058
Esa Järvenpää, Maarit Järvenpää, Markus Myllyoja, Örjan Stenflo
{"title":"The Ekström–Persson conjecture regarding random covering sets","authors":"Esa Järvenpää,&nbsp;Maarit Järvenpää,&nbsp;Markus Myllyoja,&nbsp;Örjan Stenflo","doi":"10.1112/jlms.70058","DOIUrl":"https://doi.org/10.1112/jlms.70058","url":null,"abstract":"<p>We consider the Hausdorff dimension of random covering sets formed by balls with centres chosen independently at random according to an arbitrary Borel probability measure on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math> and radii given by a deterministic sequence tending to zero. We prove, for a certain parameter range, the conjecture by Ekström and Persson concerning the exact value of the dimension in the special case of radii <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <mi>∞</mi>\u0000 </msubsup>\u0000 <annotation>$(n^{-alpha })_{n=1}^infty$</annotation>\u0000 </semantics></math>. For balls with an arbitrary sequence of radii, we find sharp bounds for the dimension and show that the natural extension of the Ekström–Persson conjecture is not true in this case. Finally, we construct examples demonstrating that there does not exist a dimension formula involving only the lower and upper local dimensions of the measure and a critical parameter determined by the sequence of radii.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central limit theorem for smooth statistics of one-dimensional free fermions 一维自由费米子光滑统计量的中心极限定理
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-20 DOI: 10.1112/jlms.70045
Alix Deleporte, Gaultier Lambert
{"title":"Central limit theorem for smooth statistics of one-dimensional free fermions","authors":"Alix Deleporte,&nbsp;Gaultier Lambert","doi":"10.1112/jlms.70045","DOIUrl":"https://doi.org/10.1112/jlms.70045","url":null,"abstract":"<p>We consider the determinantal point processes associated with the spectral projectors of a Schrödinger operator on <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathbb {R}$</annotation>\u0000 </semantics></math>, with a smooth confining potential. In the semiclassical limit, where the number of particles tends to infinity, we obtain a Szegő-type central limit theorem for the fluctuations of smooth linear statistics. More precisely, the Laplace transform of any statistic converges without renormalisation to a Gaussian limit with a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$H^{1/2}$</annotation>\u0000 </semantics></math>-type variance, which depends on the potential. In the one-well (one-cut) case, using the quantum action-angle theorem and additional micro-local tools, we reduce the problem to the asymptotics of Fredholm determinants of certain approximately Toeplitz operators. In the multi-cut case, we show that for generic potentials, a similar result holds and the contributions of the different wells are independent in the limit.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142868975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalizers and centralizers of subnormal subsystems of fusion systems 融合系统次正态子系统的归一化器和中心化器
IF 1 2区 数学
Journal of the London Mathematical Society-Second Series Pub Date : 2024-12-18 DOI: 10.1112/jlms.70048
Ellen Henke
{"title":"Normalizers and centralizers of subnormal subsystems of fusion systems","authors":"Ellen Henke","doi":"10.1112/jlms.70048","DOIUrl":"https://doi.org/10.1112/jlms.70048","url":null,"abstract":"<p>Every saturated fusion system corresponds to a group-like structure called a regular locality. In this paper we study (suitably defined) normalizers and centralizers of partial subnormal subgroups of regular localities. This leads to a reasonable notion of normalizers and centralizers of subnormal subsystems of fusion systems.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信