{"title":"Generalising Collins' theorem","authors":"James Howie, Hamish Short","doi":"10.1112/jlms.70240","DOIUrl":"10.1112/jlms.70240","url":null,"abstract":"<p>We generalise a result of D. J. Collins on intersections of conjugates of Magnus subgroups of one-relator groups to the context of one-relator products of locally indicable groups.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supersonic flows of the Euler–Poisson system with nonzero vorticities in three-dimensional cylinders","authors":"Myoungjean Bae, Hyangdong Park","doi":"10.1112/jlms.70233","DOIUrl":"10.1112/jlms.70233","url":null,"abstract":"<p>We prove the unique existence of three-dimensional supersonic solutions to the steady Euler–Poisson system in cylindrical nozzles. First, we establish the unique existence of irrotational solutions in a cylindrical nozzle with an arbitrary cross-section with using weighted Sobolev norms. Then, we establish the unique existence of axisymmetric solutions with nonzero vorticity in a circular cylinder. Several technical issues, including the issue of nonlinear hyperbolic–elliptic mixed type partial differential equation (PDE) system and corner singularities in a Lipschitz domain, are carefully addressed.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Peculiar behavior of the principal Laplacian eigenvalue for large negative Robin parameters","authors":"Charlotte Dietze, Konstantin Pankrashkin","doi":"10.1112/jlms.70242","DOIUrl":"10.1112/jlms.70242","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$Omega subset mathbb {R}^n$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 2$</annotation>\u0000 </semantics></math> be a bounded Lipschitz domain with outer unit normal <span></span><math>\u0000 <semantics>\u0000 <mi>ν</mi>\u0000 <annotation>$nu$</annotation>\u0000 </semantics></math>. For <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>∈</mo>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$alpha in mathbb {R}$</annotation>\u0000 </semantics></math>, let <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>R</mi>\u0000 <mi>Ω</mi>\u0000 <mi>α</mi>\u0000 </msubsup>\u0000 <annotation>$R_Omega ^alpha$</annotation>\u0000 </semantics></math> be the Laplacian in <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> with the Robin boundary condition <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>∂</mi>\u0000 <mi>ν</mi>\u0000 </msub>\u0000 <mi>u</mi>\u0000 <mo>+</mo>\u0000 <mi>α</mi>\u0000 <mi>u</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$partial _nu u+alpha u=0$</annotation>\u0000 </semantics></math>, and denote by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mo>(</mo>\u0000 <msubsup>\u0000 <mi>R</mi>\u0000 <mi>Ω</mi>\u0000 <mi>α</mi>\u0000 </msubsup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$E(R^alpha _Omega)$</annotation>\u0000 </semantics></math> its principal eigenvalue. In 2017, Bucur, Freitas, and Kennedy stated the following open question: <i>Does the limit of the ratio</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 <mrow>\u0000 ","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite generation of \u0000 \u0000 \u0000 split-\u0000 F\u0000 -regular\u0000 \u0000 $text{split-}Ftext{-regular}$\u0000 monoid algebras","authors":"Rankeya Datta, Karl Schwede, Kevin Tucker","doi":"10.1112/jlms.70234","DOIUrl":"10.1112/jlms.70234","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> be a submonoid of a free Abelian group of finite rank. We show that if <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> is a field of prime characteristic such that the monoid <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-algebra <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>[</mo>\u0000 <mi>S</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$k[S]$</annotation>\u0000 </semantics></math> is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>split-</mtext>\u0000 <mi>F</mi>\u0000 <mtext>-regular</mtext>\u0000 </mrow>\u0000 <annotation>$text{split-}Ftext{-regular}$</annotation>\u0000 </semantics></math>, then <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>[</mo>\u0000 <mi>S</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 <annotation>$k[S]$</annotation>\u0000 </semantics></math> is a finitely generated <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-algebra, or equivalently, that <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math> is a finitely generated monoid. Split-<span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-regular rings are possibly non-Noetherian or non-<span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-finite rings that satisfy the defining property of strongly <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-regular rings from the theories of tight closure and <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-singularities. Our finite generation result provides evidence in favor of the conjecture that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>split-</mtext>\u0000 <mi>F</mi>\u0000 <mtext>-regular</mtext>\u0000 </mrow>\u0000 <annotation>$text{split-}Ftext{-regular}$</annotation>\u0000 </semantics></math> rings in funct","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}