Mikhail Belolipetsky, Gregory Cosac, Cayo Dória, Gisele Teixeira Paula
{"title":"Geometry and arithmetic of semi-arithmetic Fuchsian groups","authors":"Mikhail Belolipetsky, Gregory Cosac, Cayo Dória, Gisele Teixeira Paula","doi":"10.1112/jlms.70087","DOIUrl":null,"url":null,"abstract":"<p>Semi-arithmetic Fuchsian groups is a wide class of discrete groups of isometries of the hyperbolic plane which includes arithmetic Fuchsian groups, hyperbolic triangle groups, groups admitting a modular embedding, and others. We introduce a new geometric invariant of a semi-arithmetic group called stretch. Its definition is based on the notion of the Riemannian center of mass developed by Karcher and collaborators. We show that there exist only finitely many conjugacy classes of semi-arithmetic groups with bounded arithmetic dimension, stretch and coarea. The proof of this result uses the arithmetic Margulis lemma. We also show that when stretch is not bounded there exist infinite sequences of such groups.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70087","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-arithmetic Fuchsian groups is a wide class of discrete groups of isometries of the hyperbolic plane which includes arithmetic Fuchsian groups, hyperbolic triangle groups, groups admitting a modular embedding, and others. We introduce a new geometric invariant of a semi-arithmetic group called stretch. Its definition is based on the notion of the Riemannian center of mass developed by Karcher and collaborators. We show that there exist only finitely many conjugacy classes of semi-arithmetic groups with bounded arithmetic dimension, stretch and coarea. The proof of this result uses the arithmetic Margulis lemma. We also show that when stretch is not bounded there exist infinite sequences of such groups.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.