同态模态的劳伦展开

IF 1 2区 数学 Q1 MATHEMATICS
Gabriele Bogo, Yingkun Li, Markus Schwagenscheidt
{"title":"同态模态的劳伦展开","authors":"Gabriele Bogo,&nbsp;Yingkun Li,&nbsp;Markus Schwagenscheidt","doi":"10.1112/jlms.70036","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the Laurent coefficients of meromorphic modular forms at complex multiplication points by giving two approaches of computing them. The first is a generalization of the method of Rodriguez-Villegas and Zagier, which expresses the Laurent coefficients as constant terms of a family of polynomials obtained through recursion. The second applies to meromorphic modular forms that are regularized theta lifts, and expresses their Laurent coefficients in terms of Fourier coefficients of harmonic Maass forms.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70036","citationCount":"0","resultStr":"{\"title\":\"Laurent expansions of meromorphic modular forms\",\"authors\":\"Gabriele Bogo,&nbsp;Yingkun Li,&nbsp;Markus Schwagenscheidt\",\"doi\":\"10.1112/jlms.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the Laurent coefficients of meromorphic modular forms at complex multiplication points by giving two approaches of computing them. The first is a generalization of the method of Rodriguez-Villegas and Zagier, which expresses the Laurent coefficients as constant terms of a family of polynomials obtained through recursion. The second applies to meromorphic modular forms that are regularized theta lifts, and expresses their Laurent coefficients in terms of Fourier coefficients of harmonic Maass forms.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70036\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过给出两种计算方法,研究了复乘点处合模态形式的劳伦系数。第一种是对 Rodriguez-Villegas 和 Zagier 方法的推广,将劳伦系数表示为通过递归得到的多项式族的常数项。第二种方法适用于属于正则化 Theta 抬高的微模态形式,用谐波 Maass 形式的傅里叶系数来表示它们的洛朗系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laurent expansions of meromorphic modular forms

In this paper, we study the Laurent coefficients of meromorphic modular forms at complex multiplication points by giving two approaches of computing them. The first is a generalization of the method of Rodriguez-Villegas and Zagier, which expresses the Laurent coefficients as constant terms of a family of polynomials obtained through recursion. The second applies to meromorphic modular forms that are regularized theta lifts, and expresses their Laurent coefficients in terms of Fourier coefficients of harmonic Maass forms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信