Tensor categories of weight modules of sl ̂ 2 $\widehat{\mathfrak {sl}}_2$ at admissible level

IF 1 2区 数学 Q1 MATHEMATICS
Thomas Creutzig
{"title":"Tensor categories of weight modules of \n \n \n \n sl\n ̂\n \n 2\n \n $\\widehat{\\mathfrak {sl}}_2$\n at admissible level","authors":"Thomas Creutzig","doi":"10.1112/jlms.70037","DOIUrl":null,"url":null,"abstract":"<p>The category of weight modules <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>-wtmod</mo>\n </mrow>\n <annotation>$L_{k}(\\mathfrak {sl}_2)\\operatorname{-wtmod}$</annotation>\n </semantics></math> of the simple affine vertex algebra of <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {sl}_2$</annotation>\n </semantics></math> at an admissible level <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> is neither finite nor semisimple and modules are usually not lower-bounded and have infinite-dimensional conformal weight subspaces. However, this vertex algebra enjoys a duality with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>ℓ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mrow>\n <mn>2</mn>\n <mo>|</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {W}_\\ell (\\mathfrak {sl}_{2|1})$</annotation>\n </semantics></math>, the simple principal <span></span><math>\n <semantics>\n <mi>W</mi>\n <annotation>$\\mathcal {W}$</annotation>\n </semantics></math>-algebra of <span></span><math>\n <semantics>\n <msub>\n <mi>sl</mi>\n <mrow>\n <mn>2</mn>\n <mo>|</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\mathfrak {sl}_{2|1}$</annotation>\n </semantics></math> at level <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> (the <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$N=2$</annotation>\n </semantics></math> super conformal algebra) where the levels are related via <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mo>)</mo>\n <mo>(</mo>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$(k+2)(\\ell +1)=1$</annotation>\n </semantics></math>. Every weight module of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>ℓ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mrow>\n <mn>2</mn>\n <mo>|</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {W}_\\ell (\\mathfrak {sl}_{2|1})$</annotation>\n </semantics></math> is lower-bounded and has finite-dimensional conformal weight spaces. The main technical result is that every weight module of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>W</mi>\n <mi>ℓ</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mrow>\n <mn>2</mn>\n <mo>|</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {W}_\\ell (\\mathfrak {sl}_{2|1})$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>1</mn>\n </msub>\n <annotation>$C_1$</annotation>\n </semantics></math>-cofinite. The existence of a vertex tensor category follows and the theory of vertex superalgebra extensions implies the existence of vertex tensor category structure on <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>-wtmod</mo>\n </mrow>\n <annotation>$L_{k}(\\mathfrak {sl}_2)\\operatorname{-wtmod}$</annotation>\n </semantics></math> for any admissible level <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>. As applications, the fusion rules of ordinary modules with any weight module are computed, and it is shown that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>-wtmod</mo>\n </mrow>\n <annotation>$L_{k}(\\mathfrak {sl}_2)\\operatorname{-wtmod}$</annotation>\n </semantics></math> is a ribbon category if and only if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mrow>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <mo>-wtmod</mo>\n </mrow>\n <annotation>$L_{k+1}(\\mathfrak g)\\operatorname{-wtmod}$</annotation>\n </semantics></math> is, in particular, it follows that for admissible levels <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mfrac>\n <mi>u</mi>\n <mi>v</mi>\n </mfrac>\n </mrow>\n <annotation>$k = - 2 + \\frac{u}{v}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$v \\in \\lbrace 2, 3\\rbrace$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mi>mod</mi>\n <mspace></mspace>\n <mi>v</mi>\n </mrow>\n <annotation>$u = -1 \\mod {v}$</annotation>\n </semantics></math>, the category <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>L</mi>\n <mi>k</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>sl</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>-wtmod</mo>\n </mrow>\n <annotation>$L_{k}(\\mathfrak {sl}_2)\\operatorname{-wtmod}$</annotation>\n </semantics></math> is a ribbon category.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The category of weight modules L k ( sl 2 ) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$ of the simple affine vertex algebra of sl 2 $\mathfrak {sl}_2$ at an admissible level k $k$ is neither finite nor semisimple and modules are usually not lower-bounded and have infinite-dimensional conformal weight subspaces. However, this vertex algebra enjoys a duality with W ( sl 2 | 1 ) $\mathcal {W}_\ell (\mathfrak {sl}_{2|1})$ , the simple principal W $\mathcal {W}$ -algebra of sl 2 | 1 $\mathfrak {sl}_{2|1}$ at level $\ell$ (the N = 2 $N=2$ super conformal algebra) where the levels are related via ( k + 2 ) ( + 1 ) = 1 $(k+2)(\ell +1)=1$ . Every weight module of W ( sl 2 | 1 ) $\mathcal {W}_\ell (\mathfrak {sl}_{2|1})$ is lower-bounded and has finite-dimensional conformal weight spaces. The main technical result is that every weight module of W ( sl 2 | 1 ) $\mathcal {W}_\ell (\mathfrak {sl}_{2|1})$ is C 1 $C_1$ -cofinite. The existence of a vertex tensor category follows and the theory of vertex superalgebra extensions implies the existence of vertex tensor category structure on L k ( sl 2 ) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$ for any admissible level k $k$ . As applications, the fusion rules of ordinary modules with any weight module are computed, and it is shown that L k ( sl 2 ) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$ is a ribbon category if and only if L k + 1 ( g ) -wtmod $L_{k+1}(\mathfrak g)\operatorname{-wtmod}$ is, in particular, it follows that for admissible levels k = 2 + u v $k = - 2 + \frac{u}{v}$ and v { 2 , 3 } $v \in \lbrace 2, 3\rbrace$ and u = 1 mod v $u = -1 \mod {v}$ , the category L k ( sl 2 ) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$ is a ribbon category.

Abstract Image

sl²$\widehat{\mathfrak {sl}}_2$的权模在容许水平上的张量范畴
简单仿射的权重模块lk (sl 2) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$的范畴在容许水平k$ k$上的顶点代数sl $\mathfrak {sl}_2$既不是有限的也不是半简单的,模通常不是下界的并且具有无限维共形权子空间。然而,这个顶点代数与W (sl 2 | 1)具有对偶性。$\mathcal {W}_\ well (\mathfrak {sl}_{2|1})$,简单的原理W $\mathcal {W}$ -代数的sl $ $\mathfrak {sl}_{2|1}$在水平z $\ell$N=2$ N=2$超共形代数)其中能级通过(k + 2) (r + 1) = 1相关联$(k+2)(\ well +1)=1$。wl (sl 2 | 1)的每个权模$\mathcal {W}_\ell (\mathfrak {sl}_{2|1})$是下界的,具有有限维共形权空间。主要的技术结果是,每个w_1 (2bb_1)的权重模块$\mathcal {W}_\ well (\mathfrak {sl}_{2|1})$是c1 $C_1$ -cofinite。顶点张量范畴的存在性如下,顶点超代数扩展理论暗示了L k (sl 2)上顶点张量范畴结构的存在性-wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$用于任何允许的级别k$ k$。 作为应用,计算了普通模块与任意权重模块的融合规则;证明了lk (sl 2) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$是一个带状类别,当且仅当如果lk +1 (g) -wtmod $L_{k+1}(\mathfrak g)\operatorname{-wtmod}$是,特别是,因此,对于k = - 2 + u v $k = - 2 + \frac{u}{v}$和v∈{2,3}$ v \in \rbrace$ 2,3 \rbrace$ and u = -1 mod v $u = -1 \mod {v}$,类别lk (sl 2) -wtmod $L_{k}(\mathfrak {sl}_2)\operatorname{-wtmod}$是一个带状类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信