On the Witt group of the punctured spectrum of a regular semilocal ring

IF 1 2区 数学 Q1 MATHEMATICS
Stefan Gille, Ivan Panin
{"title":"On the Witt group of the punctured spectrum of a regular semilocal ring","authors":"Stefan Gille,&nbsp;Ivan Panin","doi":"10.1112/jlms.70042","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> be a regular semilocal ring of dimension <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mi>q</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>⩾</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$4q+1\\geqslant 5$</annotation>\n </semantics></math> which contains <span></span><math>\n <semantics>\n <mfrac>\n <mn>1</mn>\n <mn>2</mn>\n </mfrac>\n <annotation>$\\frac{1}{2}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>l</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$l\\geqslant 1$</annotation>\n </semantics></math> the number of maximal ideals of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> which are assumed to be all of the same height, and <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> the punctured spectrum of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <mo>Spec</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\operatorname{Spec}R$</annotation>\n </semantics></math> without the maximal ideals. We show that the Witt ring <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <mi>U</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{W}(U)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>U</mi>\n <annotation>$U$</annotation>\n </semantics></math> has <span></span><math>\n <semantics>\n <mi>l</mi>\n <annotation>$l$</annotation>\n </semantics></math> non-trivial generators <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>E</mi>\n <mi>l</mi>\n </msub>\n </mrow>\n <annotation>$\\mathfrak {E}_{1},\\ldots ,\\mathfrak {E}_{l}$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{W}(R)$</annotation>\n </semantics></math>-algebra, which satisfy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>i</mi>\n </msub>\n <msub>\n <mi>E</mi>\n <mi>j</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\mathfrak {E}_{i}\\mathfrak {E}_{j}=0$</annotation>\n </semantics></math> for all <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>i</mi>\n <mo>,</mo>\n <mi>j</mi>\n <mo>⩽</mo>\n <mi>l</mi>\n </mrow>\n <annotation>$1\\leqslant i,j\\leqslant l$</annotation>\n </semantics></math>. If <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math> is integral, then these generators become trivial over the fraction field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$R$</annotation>\n </semantics></math>. In particular, the natural morphism <span></span><math>\n <semantics>\n <mrow>\n <mi>W</mi>\n <mo>(</mo>\n <mi>U</mi>\n <mo>)</mo>\n <mo>⟶</mo>\n <mi>W</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{W}(U)\\longrightarrow \\mathrm{W}(K)$</annotation>\n </semantics></math> is not injective.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70042","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let  R $R$ be a regular semilocal ring of dimension  4 q + 1 5 $4q+1\geqslant 5$ which contains  1 2 $\frac{1}{2}$ , l 1 $l\geqslant 1$ the number of maximal ideals of  R $R$ which are assumed to be all of the same height, and  U $U$ the punctured spectrum of  R $R$ , that is, Spec R $\operatorname{Spec}R$ without the maximal ideals. We show that the Witt ring  W ( U ) $\mathrm{W}(U)$ of  U $U$ has  l $l$ non-trivial generators E 1 , , E l $\mathfrak {E}_{1},\ldots ,\mathfrak {E}_{l}$ as  W ( R ) $\mathrm{W}(R)$ -algebra, which satisfy E i E j = 0 $\mathfrak {E}_{i}\mathfrak {E}_{j}=0$ for all 1 i , j l $1\leqslant i,j\leqslant l$ . If  R $R$ is integral, then these generators become trivial over the fraction field  K $K$ of  R $R$ . In particular, the natural morphism W ( U ) W ( K ) $\mathrm{W}(U)\longrightarrow \mathrm{W}(K)$ is not injective.

Abstract Image

关于正则半局部环的点状谱的维特群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信