On the independence number of sparser random Cayley graphs

IF 1 2区 数学 Q1 MATHEMATICS
Marcelo Campos, Gabriel Dahia, João Pedro Marciano
{"title":"On the independence number of sparser random Cayley graphs","authors":"Marcelo Campos,&nbsp;Gabriel Dahia,&nbsp;João Pedro Marciano","doi":"10.1112/jlms.70041","DOIUrl":null,"url":null,"abstract":"<p>The Cayley sum graph <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\Gamma _A$</annotation>\n </semantics></math> of a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\mathbb {Z}_n$</annotation>\n </semantics></math> is defined to have vertex set <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {Z}_n$</annotation>\n </semantics></math> and an edge between two distinct vertices <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$x, y \\in \\mathbb {Z}_n$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$x + y \\in A$</annotation>\n </semantics></math>. Green and Morris proved that if the set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-random subset of <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {Z}_n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p = 1/2$</annotation>\n </semantics></math>, then the independence number of <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\Gamma _A$</annotation>\n </semantics></math> is asymptotically equal to <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G(n, 1/2))$</annotation>\n </semantics></math> with high probability. Our main theorem is the first extension of their result to <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$p = o(1)$</annotation>\n </semantics></math>: we show that, with high probability,\n\n </p><p>One of the tools in our proof is a geometric-flavoured theorem that generalises Freĭman's lemma, the classical lower bound on the size of high-dimensional sumsets. We also give a short proof of this result up to a constant factor; this version yields a much simpler proof of our main theorem at the expense of a worse constant.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Cayley sum graph Γ A $\Gamma _A$ of a set A Z n $A \subseteq \mathbb {Z}_n$ is defined to have vertex set Z n $\mathbb {Z}_n$ and an edge between two distinct vertices x , y Z n $x, y \in \mathbb {Z}_n$ if x + y A $x + y \in A$ . Green and Morris proved that if the set A $A$ is a p $p$ -random subset of Z n $\mathbb {Z}_n$ with p = 1 / 2 $p = 1/2$ , then the independence number of Γ A $\Gamma _A$ is asymptotically equal to α ( G ( n , 1 / 2 ) ) $\alpha (G(n, 1/2))$ with high probability. Our main theorem is the first extension of their result to p = o ( 1 ) $p = o(1)$ : we show that, with high probability,

One of the tools in our proof is a geometric-flavoured theorem that generalises Freĭman's lemma, the classical lower bound on the size of high-dimensional sumsets. We also give a short proof of this result up to a constant factor; this version yields a much simpler proof of our main theorem at the expense of a worse constant.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信