有限群的正则数及其他与基相关的不变量

IF 1 2区 数学 Q1 MATHEMATICS
Marina Anagnostopoulou-Merkouri, Timothy C. Burness
{"title":"有限群的正则数及其他与基相关的不变量","authors":"Marina Anagnostopoulou-Merkouri,&nbsp;Timothy C. Burness","doi":"10.1112/jlms.70035","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(H_1, \\ldots, H_k)$</annotation>\n </semantics></math> of core-free subgroups of a finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is said to be regular if <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> has a regular orbit on the Cartesian product <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>/</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <mi>⋯</mi>\n <mo>×</mo>\n <mi>G</mi>\n <mo>/</mo>\n <msub>\n <mi>H</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$G/H_1 \\times \\cdots \\times G/H_k$</annotation>\n </semantics></math>. The regularity number of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$R(G)$</annotation>\n </semantics></math>, is the smallest positive integer <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> with the property that every such <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-tuple is regular. In this paper, we develop some general methods for studying the regularity of subgroup tuples in arbitrary finite groups, and we determine the precise regularity number of all almost simple groups with an alternating or sporadic socle. For example, we prove that <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$R(S_n) = n-1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n <mo>=</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$R(A_n) = n-2$</annotation>\n </semantics></math>. We also formulate and investigate natural generalisations of several well-studied problems on base sizes for finite permutation groups, including conjectures due to Cameron, Pyber and Vdovin. For instance, we extend earlier work of Burness, O'Brien and Wilson by proving that <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n <mo>⩽</mo>\n <mn>7</mn>\n </mrow>\n <annotation>$R(G) \\leqslant 7$</annotation>\n </semantics></math> for every almost simple sporadic group, with equality if and only if <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is the Mathieu group <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mn>24</mn>\n </msub>\n <annotation>${\\rm M}_{24}$</annotation>\n </semantics></math>. We also show that every triple of soluble subgroups in an almost simple sporadic group is regular, which generalises recent work of Burness on base sizes for transitive actions of sporadic groups with soluble point stabilisers.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70035","citationCount":"0","resultStr":"{\"title\":\"On the regularity number of a finite group and other base-related invariants\",\"authors\":\"Marina Anagnostopoulou-Merkouri,&nbsp;Timothy C. Burness\",\"doi\":\"10.1112/jlms.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-tuple <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(H_1, \\\\ldots, H_k)$</annotation>\\n </semantics></math> of core-free subgroups of a finite group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is said to be regular if <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> has a regular orbit on the Cartesian product <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>×</mo>\\n <mi>⋯</mi>\\n <mo>×</mo>\\n <mi>G</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>H</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$G/H_1 \\\\times \\\\cdots \\\\times G/H_k$</annotation>\\n </semantics></math>. The regularity number of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$R(G)$</annotation>\\n </semantics></math>, is the smallest positive integer <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math> with the property that every such <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-tuple is regular. In this paper, we develop some general methods for studying the regularity of subgroup tuples in arbitrary finite groups, and we determine the precise regularity number of all almost simple groups with an alternating or sporadic socle. For example, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$R(S_n) = n-1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <msub>\\n <mi>A</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$R(A_n) = n-2$</annotation>\\n </semantics></math>. We also formulate and investigate natural generalisations of several well-studied problems on base sizes for finite permutation groups, including conjectures due to Cameron, Pyber and Vdovin. For instance, we extend earlier work of Burness, O'Brien and Wilson by proving that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>R</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n <mo>⩽</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation>$R(G) \\\\leqslant 7$</annotation>\\n </semantics></math> for every almost simple sporadic group, with equality if and only if <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is the Mathieu group <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mn>24</mn>\\n </msub>\\n <annotation>${\\\\rm M}_{24}$</annotation>\\n </semantics></math>. We also show that every triple of soluble subgroups in an almost simple sporadic group is regular, which generalises recent work of Burness on base sizes for transitive actions of sporadic groups with soluble point stabilisers.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70035\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

A k $k$ -tuple (h1,…,hk) $(H_1, \ldots, H_k)$ 有限群G的无核子群 $G$ 如果G $G$ 在笛卡尔积G / H 1 ×⋯x G / H k上有一个规则的轨道 $G/H_1 \times \cdots \times G/H_k$ . G的正则数 $G$ ,用R (G)表示 $R(G)$ 是最小的正整数k $k$ 它的性质是每一个这样的k $k$ -tuple是正则的。本文给出了研究任意有限群中子群元组正则性的一般方法,并确定了所有具有交替或偶发社会的几乎简单群的精确正则数。例如,我们证明了R (sn) = n - 1 $R(S_n) = n-1$ R (A n) = n−2 $R(A_n) = n-2$ . 我们还制定和研究了几个关于有限置换群的基大小问题的自然推广,包括Cameron, Pyber和Vdovin的猜想。例如,我们扩展了Burness, O'Brien和Wilson的早期工作,证明了R (G)≤7 $R(G) \leqslant 7$ 对于每一个几乎简单的零星群,当且仅当G $G$ 马修群是m24吗 ${\rm M}_{24}$ . 我们还证明了在一个几乎简单的散发性群中每三个可溶亚群都是正则的,这推广了Burness最近关于具有可溶点稳定剂的散发性群的传递作用的基大小的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the regularity number of a finite group and other base-related invariants

A k $k$ -tuple ( H 1 , , H k ) $(H_1, \ldots, H_k)$ of core-free subgroups of a finite group G $G$ is said to be regular if G $G$ has a regular orbit on the Cartesian product G / H 1 × × G / H k $G/H_1 \times \cdots \times G/H_k$ . The regularity number of G $G$ , denoted by R ( G ) $R(G)$ , is the smallest positive integer k $k$ with the property that every such k $k$ -tuple is regular. In this paper, we develop some general methods for studying the regularity of subgroup tuples in arbitrary finite groups, and we determine the precise regularity number of all almost simple groups with an alternating or sporadic socle. For example, we prove that R ( S n ) = n 1 $R(S_n) = n-1$ and R ( A n ) = n 2 $R(A_n) = n-2$ . We also formulate and investigate natural generalisations of several well-studied problems on base sizes for finite permutation groups, including conjectures due to Cameron, Pyber and Vdovin. For instance, we extend earlier work of Burness, O'Brien and Wilson by proving that R ( G ) 7 $R(G) \leqslant 7$ for every almost simple sporadic group, with equality if and only if G $G$ is the Mathieu group M 24 ${\rm M}_{24}$ . We also show that every triple of soluble subgroups in an almost simple sporadic group is regular, which generalises recent work of Burness on base sizes for transitive actions of sporadic groups with soluble point stabilisers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信