稀疏随机Cayley图的独立数

IF 1 2区 数学 Q1 MATHEMATICS
Marcelo Campos, Gabriel Dahia, João Pedro Marciano
{"title":"稀疏随机Cayley图的独立数","authors":"Marcelo Campos,&nbsp;Gabriel Dahia,&nbsp;João Pedro Marciano","doi":"10.1112/jlms.70041","DOIUrl":null,"url":null,"abstract":"<p>The Cayley sum graph <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\Gamma _A$</annotation>\n </semantics></math> of a set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$A \\subseteq \\mathbb {Z}_n$</annotation>\n </semantics></math> is defined to have vertex set <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {Z}_n$</annotation>\n </semantics></math> and an edge between two distinct vertices <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$x, y \\in \\mathbb {Z}_n$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>+</mo>\n <mi>y</mi>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$x + y \\in A$</annotation>\n </semantics></math>. Green and Morris proved that if the set <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-random subset of <span></span><math>\n <semantics>\n <msub>\n <mi>Z</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {Z}_n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p = 1/2$</annotation>\n </semantics></math>, then the independence number of <span></span><math>\n <semantics>\n <msub>\n <mi>Γ</mi>\n <mi>A</mi>\n </msub>\n <annotation>$\\Gamma _A$</annotation>\n </semantics></math> is asymptotically equal to <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G(n, 1/2))$</annotation>\n </semantics></math> with high probability. Our main theorem is the first extension of their result to <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mi>o</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$p = o(1)$</annotation>\n </semantics></math>: we show that, with high probability,\n\n </p><p>One of the tools in our proof is a geometric-flavoured theorem that generalises Freĭman's lemma, the classical lower bound on the size of high-dimensional sumsets. We also give a short proof of this result up to a constant factor; this version yields a much simpler proof of our main theorem at the expense of a worse constant.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the independence number of sparser random Cayley graphs\",\"authors\":\"Marcelo Campos,&nbsp;Gabriel Dahia,&nbsp;João Pedro Marciano\",\"doi\":\"10.1112/jlms.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Cayley sum graph <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>A</mi>\\n </msub>\\n <annotation>$\\\\Gamma _A$</annotation>\\n </semantics></math> of a set <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>⊆</mo>\\n <msub>\\n <mi>Z</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$A \\\\subseteq \\\\mathbb {Z}_n$</annotation>\\n </semantics></math> is defined to have vertex set <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathbb {Z}_n$</annotation>\\n </semantics></math> and an edge between two distinct vertices <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>y</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>Z</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$x, y \\\\in \\\\mathbb {Z}_n$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>+</mo>\\n <mi>y</mi>\\n <mo>∈</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$x + y \\\\in A$</annotation>\\n </semantics></math>. Green and Morris proved that if the set <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-random subset of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Z</mi>\\n <mi>n</mi>\\n </msub>\\n <annotation>$\\\\mathbb {Z}_n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p = 1/2$</annotation>\\n </semantics></math>, then the independence number of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Γ</mi>\\n <mi>A</mi>\\n </msub>\\n <annotation>$\\\\Gamma _A$</annotation>\\n </semantics></math> is asymptotically equal to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha (G(n, 1/2))$</annotation>\\n </semantics></math> with high probability. Our main theorem is the first extension of their result to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>=</mo>\\n <mi>o</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p = o(1)$</annotation>\\n </semantics></math>: we show that, with high probability,\\n\\n </p><p>One of the tools in our proof is a geometric-flavoured theorem that generalises Freĭman's lemma, the classical lower bound on the size of high-dimensional sumsets. We also give a short proof of this result up to a constant factor; this version yields a much simpler proof of our main theorem at the expense of a worse constant.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70041\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70041","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Cayley和图Γ A $\Gamma _A$ a的一个集合的规模 $A \subseteq \mathbb {Z}_n$ 定义为顶点集zn $\mathbb {Z}_n$ 以及两个不同顶点x, y∈zn之间的一条边 $x, y \in \mathbb {Z}_n$ 如果x + y∈A $x + y \in A$ . 格林和莫里斯证明了如果集合A $A$ 是p $p$ - zn的随机子集 $\mathbb {Z}_n$ p = 1 / 2 $p = 1/2$ ,则Γ A的独立数 $\Gamma _A$ 渐近等于α (G (n, 1 / 2)) $\alpha (G(n, 1/2))$ 很有可能。我们的主要定理是将它们的结果第一次推广到p = o (1) $p = o(1)$ 我们证明了,在高概率下,我们证明的工具之一是一个几何风格的定理,它推广了Freĭman的引理,即高维集合大小的经典下界。我们还对这个结果给出了一个简短的证明,直到一个常数因子;这个版本对我们的主要定理给出了一个简单得多的证明,但代价是一个较差的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the independence number of sparser random Cayley graphs

The Cayley sum graph Γ A $\Gamma _A$ of a set A Z n $A \subseteq \mathbb {Z}_n$ is defined to have vertex set Z n $\mathbb {Z}_n$ and an edge between two distinct vertices x , y Z n $x, y \in \mathbb {Z}_n$ if x + y A $x + y \in A$ . Green and Morris proved that if the set A $A$ is a p $p$ -random subset of Z n $\mathbb {Z}_n$ with p = 1 / 2 $p = 1/2$ , then the independence number of Γ A $\Gamma _A$ is asymptotically equal to α ( G ( n , 1 / 2 ) ) $\alpha (G(n, 1/2))$ with high probability. Our main theorem is the first extension of their result to p = o ( 1 ) $p = o(1)$ : we show that, with high probability,

One of the tools in our proof is a geometric-flavoured theorem that generalises Freĭman's lemma, the classical lower bound on the size of high-dimensional sumsets. We also give a short proof of this result up to a constant factor; this version yields a much simpler proof of our main theorem at the expense of a worse constant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信