具有抛物不动点的三次多项式的动态参数空间

IF 1 2区 数学 Q1 MATHEMATICS
Runze Zhang
{"title":"具有抛物不动点的三次多项式的动态参数空间","authors":"Runze Zhang","doi":"10.1112/jlms.70038","DOIUrl":null,"url":null,"abstract":"<p>This article focuses on the connectedness locus of the cubic polynomial slice <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Per</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Per}_1(\\lambda)$</annotation>\n </semantics></math> with a parabolic fixed point of multiplier <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>=</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n <mi>i</mi>\n <mi>p</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\lambda =e^{2\\pi i{p}/{q}}$</annotation>\n </semantics></math>. We first show that any parabolic component, which is a parallel notion of hyperbolic component, is a Jordan domain. Moreover, a continuum <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$\\mathcal {K}_\\lambda$</annotation>\n </semantics></math> called the central part in the connectedness locus is introduced. This is the natural analogue to the closure of the main hyperbolic component of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Per</mi>\n <mn>1</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Per}_1(0)$</annotation>\n </semantics></math>. We prove that <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$\\mathcal {K}_\\lambda$</annotation>\n </semantics></math> is almost a double covering of the filled-in Julia set of the quadratic polynomial <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>λ</mi>\n <mi>z</mi>\n <mo>+</mo>\n <msup>\n <mi>z</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathfrak {p}(z) = \\lambda z+z^2$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On dynamical parameter space of cubic polynomials with a parabolic fixed point\",\"authors\":\"Runze Zhang\",\"doi\":\"10.1112/jlms.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article focuses on the connectedness locus of the cubic polynomial slice <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Per</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>λ</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{Per}_1(\\\\lambda)$</annotation>\\n </semantics></math> with a parabolic fixed point of multiplier <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n <mi>i</mi>\\n <mi>p</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\lambda =e^{2\\\\pi i{p}/{q}}$</annotation>\\n </semantics></math>. We first show that any parabolic component, which is a parallel notion of hyperbolic component, is a Jordan domain. Moreover, a continuum <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {K}_\\\\lambda$</annotation>\\n </semantics></math> called the central part in the connectedness locus is introduced. This is the natural analogue to the closure of the main hyperbolic component of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Per</mi>\\n <mn>1</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{Per}_1(0)$</annotation>\\n </semantics></math>. We prove that <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>λ</mi>\\n </msub>\\n <annotation>$\\\\mathcal {K}_\\\\lambda$</annotation>\\n </semantics></math> is almost a double covering of the filled-in Julia set of the quadratic polynomial <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>z</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>λ</mi>\\n <mi>z</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>z</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathfrak {p}(z) = \\\\lambda z+z^2$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 6\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70038\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有乘子λ = e的抛物不动点的三次多项式切片Per 1 (λ) $\mathrm{Per}_1(\lambda)$的连通性轨迹2 π I p / q $\lambda =e^{2\pi i{p}/{q}}$。我们首先证明了任何抛物线分量,即双曲分量的平行概念,都是一个约当定义域。此外,还引入了连续体K λ $\mathcal {K}_\lambda$,称为连通性轨迹的中心部分。这是与Per 1 (0) $\mathrm{Per}_1(0)$的主要双曲分量的闭包的自然类比。证明了K λ $\mathcal {K}_\lambda$几乎是二次多项式p (z) = λ z + z的填充Julia集的双重覆盖2 . $\mathfrak {p}(z) = \lambda z+z^2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On dynamical parameter space of cubic polynomials with a parabolic fixed point

This article focuses on the connectedness locus of the cubic polynomial slice Per 1 ( λ ) $\mathrm{Per}_1(\lambda)$ with a parabolic fixed point of multiplier λ = e 2 π i p / q $\lambda =e^{2\pi i{p}/{q}}$ . We first show that any parabolic component, which is a parallel notion of hyperbolic component, is a Jordan domain. Moreover, a continuum K λ $\mathcal {K}_\lambda$ called the central part in the connectedness locus is introduced. This is the natural analogue to the closure of the main hyperbolic component of Per 1 ( 0 ) $\mathrm{Per}_1(0)$ . We prove that K λ $\mathcal {K}_\lambda$ is almost a double covering of the filled-in Julia set of the quadratic polynomial p ( z ) = λ z + z 2 $\mathfrak {p}(z) = \lambda z+z^2$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信