{"title":"超图中彩虹匹配的锐利界","authors":"Cosmin Pohoata, Lisa Sauermann, Dmitrii Zakharov","doi":"10.1112/jlms.70252","DOIUrl":null,"url":null,"abstract":"<p>Suppose that we are given matchings <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>.</mo>\n <mo>,</mo>\n <msub>\n <mi>M</mi>\n <mi>N</mi>\n </msub>\n </mrow>\n <annotation>$M_1,\\ldots.,M_N$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math> in some <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-uniform hypergraph, and let us think of each matching having a different color. How large does <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> need to be (in terms of <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>) such that we can always find a rainbow matching of size <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math>? This problem was first introduced by Aharoni and Berger, and has since been studied by several different authors. For example, Alon discovered an intriguing connection with the Erdős–Ginzburg–Ziv problem from additive combinatorics, which implies certain lower bounds for <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. For any fixed uniformity <span></span><math>\n <semantics>\n <mrow>\n <mi>r</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$r \\geqslant 3$</annotation>\n </semantics></math>, we answer this problem up to constant factors depending on <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>, showing that the answer is on the order of <span></span><math>\n <semantics>\n <msup>\n <mi>t</mi>\n <mi>r</mi>\n </msup>\n <annotation>$t^{r}$</annotation>\n </semantics></math>. Furthermore, for any fixed <span></span><math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math> and large <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>, we determine the answer up to lower order factors. We also prove analogous results in the setting where the underlying hypergraph is assumed to be <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-partite. Our results settle questions of Alon and of Glebov–Sudakov–Szabó.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds for rainbow matchings in hypergraphs\",\"authors\":\"Cosmin Pohoata, Lisa Sauermann, Dmitrii Zakharov\",\"doi\":\"10.1112/jlms.70252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Suppose that we are given matchings <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>.</mo>\\n <mo>,</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>N</mi>\\n </msub>\\n </mrow>\\n <annotation>$M_1,\\\\ldots.,M_N$</annotation>\\n </semantics></math> of size <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math> in some <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-uniform hypergraph, and let us think of each matching having a different color. How large does <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> need to be (in terms of <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>) such that we can always find a rainbow matching of size <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math>? This problem was first introduced by Aharoni and Berger, and has since been studied by several different authors. For example, Alon discovered an intriguing connection with the Erdős–Ginzburg–Ziv problem from additive combinatorics, which implies certain lower bounds for <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>. For any fixed uniformity <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>r</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$r \\\\geqslant 3$</annotation>\\n </semantics></math>, we answer this problem up to constant factors depending on <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>, showing that the answer is on the order of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>t</mi>\\n <mi>r</mi>\\n </msup>\\n <annotation>$t^{r}$</annotation>\\n </semantics></math>. Furthermore, for any fixed <span></span><math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math> and large <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>, we determine the answer up to lower order factors. We also prove analogous results in the setting where the underlying hypergraph is assumed to be <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-partite. Our results settle questions of Alon and of Glebov–Sudakov–Szabó.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70252\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70252","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设我们已知匹配m1 ... ., M N $M_1,\ldots.,M_N$大小为t $t$,在某个r $r$ -均匀超图中,让我们认为每个匹配都有不同的颜色。N $N$需要多大(以t $t$和r $r$表示)才能总是找到大小为t $t$的彩虹匹配?这个问题最初是由Aharoni和Berger提出的,此后又有几位不同的作者对其进行了研究。例如,阿隆发现了一个有趣的联系与Erdős-Ginzburg-Ziv问题从加法组合,这意味着某些下界的N $N$。对于任何固定的一致性r大于或等于3 $r \geqslant 3$,我们回答这个问题直到依赖于r $r$的常数因子,显示答案是t r $t^{r}$的数量级。此外,对于任何固定的t $t$和较大的r $r$,我们确定答案到低阶因子。在假设超图为r $r$ -部的情况下,我们也证明了类似的结果。我们的结果解决了Alon和Glebov-Sudakov-Szabó的问题。
Suppose that we are given matchings of size in some -uniform hypergraph, and let us think of each matching having a different color. How large does need to be (in terms of and ) such that we can always find a rainbow matching of size ? This problem was first introduced by Aharoni and Berger, and has since been studied by several different authors. For example, Alon discovered an intriguing connection with the Erdős–Ginzburg–Ziv problem from additive combinatorics, which implies certain lower bounds for . For any fixed uniformity , we answer this problem up to constant factors depending on , showing that the answer is on the order of . Furthermore, for any fixed and large , we determine the answer up to lower order factors. We also prove analogous results in the setting where the underlying hypergraph is assumed to be -partite. Our results settle questions of Alon and of Glebov–Sudakov–Szabó.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.