On the stable radical of the module category for special biserial algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Suyash Srivastava, Vinit Sinha, Amit Kuber
{"title":"On the stable radical of the module category for special biserial algebras","authors":"Suyash Srivastava,&nbsp;Vinit Sinha,&nbsp;Amit Kuber","doi":"10.1112/jlms.70275","DOIUrl":null,"url":null,"abstract":"<p>Suppose that <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is a special biserial algebra over an algebraically closed field. Schröer showed that if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is domestic, then the radical of the category of finitely generated (left) <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math>-modules is nilpotent, and the least ordinal, denoted as <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)$</annotation>\n </semantics></math>, where the decreasing sequence of powers of the radical stabilizes satisfies <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)&lt;\\omega ^2$</annotation>\n </semantics></math>. With Gupta and Sardar, the third author conjectured that if <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> has at least one band, then <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>⩽</mo>\n <mi>st</mi>\n <mrow>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\omega \\leqslant \\mathrm{st}(\\Lambda)&lt;\\omega ^2$</annotation>\n </semantics></math> even when <span></span><math>\n <semantics>\n <mi>Λ</mi>\n <annotation>$\\Lambda$</annotation>\n </semantics></math> is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{st}(\\Lambda)$</annotation>\n </semantics></math> up to a finite error. We also show that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>⩽</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <msup>\n <mi>ω</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\omega \\leqslant \\alpha &lt;\\omega ^2$</annotation>\n </semantics></math>, there is a finite-dimensional tame representation-type algebra <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>st</mi>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>α</mi>\n </mrow>\n <annotation>$\\mathrm{st}(\\Gamma)=\\alpha$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70275","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that Λ $\Lambda$ is a special biserial algebra over an algebraically closed field. Schröer showed that if Λ $\Lambda$ is domestic, then the radical of the category of finitely generated (left) Λ $\Lambda$ -modules is nilpotent, and the least ordinal, denoted as st ( Λ ) $\mathrm{st}(\Lambda)$ , where the decreasing sequence of powers of the radical stabilizes satisfies st ( Λ ) < ω 2 $\mathrm{st}(\Lambda)<\omega ^2$ . With Gupta and Sardar, the third author conjectured that if Λ $\Lambda$ has at least one band, then ω st ( Λ ) < ω 2 $\omega \leqslant \mathrm{st}(\Lambda)<\omega ^2$ even when Λ $\Lambda$ is nondomestic. In this paper, we settle this conjecture in the affirmative. We also describe an algorithm to compute st ( Λ ) $\mathrm{st}(\Lambda)$ up to a finite error. We also show that for each ω α < ω 2 $\omega \leqslant \alpha <\omega ^2$ , there is a finite-dimensional tame representation-type algebra Γ $\Gamma$ with st ( Γ ) = α $\mathrm{st}(\Gamma)=\alpha$ .

Abstract Image

Abstract Image

特殊双列代数模范畴的稳定根
假设Λ $\Lambda$是代数闭域上的一个特殊的双代数。Schröer表明,如果Λ $\Lambda$是国内的,那么有限生成(左)Λ $\Lambda$ -模块的范畴的根是幂零的,最小序数,表示为st (Λ) $\mathrm{st}(\Lambda)$,其中自由基稳定幂的递减序列满足st (Λ) &lt; ω 2 $\mathrm{st}(\Lambda)<\omega ^2$。与Gupta和Sardar一起,第三位作者推测,如果Λ $\Lambda$至少有一个波段,然后ω≤st (Λ) &lt; ω 2 $\omega \leqslant \mathrm{st}(\Lambda)<\omega ^2$,即使Λ $\Lambda$是非国内的。在本文中,我们肯定地解决了这个猜想。我们还描述了一种计算st (Λ) $\mathrm{st}(\Lambda)$到有限误差的算法。我们还证明了对于每个ω≤α &lt; ω 2 $\omega \leqslant \alpha <\omega ^2$,存在一个有限维驯服表示型代数Γ $\Gamma$,其中st (Γ) = α $\mathrm{st}(\Gamma)=\alpha$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信