Deformations of Anosov subgroups: Limit cones and growth indicators

IF 1.2 2区 数学 Q1 MATHEMATICS
Subhadip Dey, Hee Oh
{"title":"Deformations of Anosov subgroups: Limit cones and growth indicators","authors":"Subhadip Dey,&nbsp;Hee Oh","doi":"10.1112/jlms.70280","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a connected semisimple real algebraic group. We prove that limit cones vary continuously under deformations of Anosov subgroups of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> under a certain convexity assumption, which turns out to be necessary. We apply this result to the notion of sharpness for the action of a discrete subgroup on a non-Riemannian homogeneous space. Finally, we show that, within the space of Anosov representations, the growth indicator, the critical exponents, and the Hausdorff dimension of limit sets (with respect to an appropriate non-Riemannian metric) all vary continuously.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70280","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70280","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G $G$ be a connected semisimple real algebraic group. We prove that limit cones vary continuously under deformations of Anosov subgroups of G $G$ under a certain convexity assumption, which turns out to be necessary. We apply this result to the notion of sharpness for the action of a discrete subgroup on a non-Riemannian homogeneous space. Finally, we show that, within the space of Anosov representations, the growth indicator, the critical exponents, and the Hausdorff dimension of limit sets (with respect to an appropriate non-Riemannian metric) all vary continuously.

Abstract Image

Abstract Image

Abstract Image

Anosov亚群的变形:极限锥和生长指标
设G$ G$是连通的半单实代数群。在一定的凸性假设下,证明了极限锥在G$ G$的Anosov子群的变形下连续变化,证明了这是必要的。我们将这一结果应用于非黎曼齐次空间上离散子群作用的锐度概念。最后,我们证明,在Anosov表示的空间内,极限集的生长指标、临界指数和Hausdorff维数(相对于适当的非黎曼度量)都是连续变化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信