{"title":"β $\\ β $ -动力系统中收缩目标集的Hausdorff测度的二分律","authors":"Yubin He","doi":"10.1112/jlms.70284","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the Hausdorff measure of shrinking target sets in <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math>-dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dichotomy laws for the Hausdorff measure of shrinking target sets in \\n \\n β\\n $\\\\beta$\\n -dynamical systems\",\"authors\":\"Yubin He\",\"doi\":\"10.1112/jlms.70284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the Hausdorff measure of shrinking target sets in <span></span><math>\\n <semantics>\\n <mi>β</mi>\\n <annotation>$\\\\beta$</annotation>\\n </semantics></math>-dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dichotomy laws for the Hausdorff measure of shrinking target sets in
β
$\beta$
-dynamical systems
In this paper, we investigate the Hausdorff measure of shrinking target sets in -dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.