β $\ β $ -动力系统中收缩目标集的Hausdorff测度的二分律

IF 1.2 2区 数学 Q1 MATHEMATICS
Yubin He
{"title":"β $\\ β $ -动力系统中收缩目标集的Hausdorff测度的二分律","authors":"Yubin He","doi":"10.1112/jlms.70284","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the Hausdorff measure of shrinking target sets in <span></span><math>\n <semantics>\n <mi>β</mi>\n <annotation>$\\beta$</annotation>\n </semantics></math>-dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dichotomy laws for the Hausdorff measure of shrinking target sets in \\n \\n β\\n $\\\\beta$\\n -dynamical systems\",\"authors\":\"Yubin He\",\"doi\":\"10.1112/jlms.70284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the Hausdorff measure of shrinking target sets in <span></span><math>\\n <semantics>\\n <mi>β</mi>\\n <annotation>$\\\\beta$</annotation>\\n </semantics></math>-dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70284\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70284","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了β $\ β $ -动力系统中收缩目标集的Hausdorff测度。这些集合是动态定义的,类似于经典的加权和乘法丢番图近似理论。虽然这些集合的勒贝格测度和豪斯多夫维理论已经被很好地理解了,但关于豪斯多夫测度理论还有很多未知之处。我们证明了这些集合的Hausdorff测度要么为零,要么为满,这取决于某个级数的收敛性或发散性,从而提供了这些集合的较为完整的测度理论描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dichotomy laws for the Hausdorff measure of shrinking target sets in 
         
            β
            $\beta$
         -dynamical systems

Dichotomy laws for the Hausdorff measure of shrinking target sets in 
         
            β
            $\beta$
         -dynamical systems

Dichotomy laws for the Hausdorff measure of shrinking target sets in β $\beta$ -dynamical systems

In this paper, we investigate the Hausdorff measure of shrinking target sets in β $\beta$ -dynamical systems. These sets are dynamically defined in analogy to the classical theory of weighted and multiplicative Diophantine approximation. While the Lebesgue measure and Hausdorff dimension theories for these sets are well-understood, much remains unknown about the Hausdorff measure theory. We show that the Hausdorff measure of these sets is either zero or full depending upon the convergence or divergence of a certain series, thus providing a rather complete measure theoretic description of these sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信