Cyclic cubic points on higher genus curves

IF 1.2 2区 数学 Q1 MATHEMATICS
James Rawson
{"title":"Cyclic cubic points on higher genus curves","authors":"James Rawson","doi":"10.1112/jlms.70288","DOIUrl":null,"url":null,"abstract":"<p>The distribution of degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> points on curves is well understood, especially for low degrees. We refine this study to include information on the Galois group in the simplest interesting case: <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d = 3$</annotation>\n </semantics></math>. For curves of genus at least 5, we show cubic points with Galois group <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mn>3</mn>\n </msub>\n <annotation>$C_3$</annotation>\n </semantics></math> arise from well-structured morphisms, along with providing computable tests for the existence of such morphisms. We prove the same for curves of lower genus under some geometric or arithmetic assumptions.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70288","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70288","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution of degree d $d$ points on curves is well understood, especially for low degrees. We refine this study to include information on the Galois group in the simplest interesting case: d = 3 $d = 3$ . For curves of genus at least 5, we show cubic points with Galois group C 3 $C_3$ arise from well-structured morphisms, along with providing computable tests for the existence of such morphisms. We prove the same for curves of lower genus under some geometric or arithmetic assumptions.

Abstract Image

Abstract Image

高属曲线上的循环三次点
d$ d$点在曲线上的分布很好理解,特别是对于低度。我们改进了这项研究,在最简单有趣的情况下包括伽罗瓦群的信息:d = 3$ d = 3$。对于属至少为5的曲线,我们证明了伽罗瓦群c3 $C_3$的三次点是由结构良好的态射产生的,并给出了这种态射存在的可计算检验。在一些几何或算术假设下,我们证明了下格曲线的相同性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信