{"title":"k -多魔方的圆法求解","authors":"Daniel Flores","doi":"10.1112/jlms.70290","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math><i>-multimagic squares</i> of order <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>. These are <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>×</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$N \\times N$</annotation>\n </semantics></math> magic squares that remain magic after raising each element to the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>th power for all <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>k</mi>\n <mo>⩽</mo>\n <mi>K</mi>\n </mrow>\n <annotation>$2 \\leqslant k \\leqslant K$</annotation>\n </semantics></math>. Given <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$K \\geqslant 2$</annotation>\n </semantics></math>, we consider the problem of establishing the smallest integer <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_2(K)$</annotation>\n </semantics></math> for which there exist <i>nontrivial</i> <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-multimagic squares of order <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$N_2(K)$</annotation>\n </semantics></math>. Previous results on multimagic squares show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>⩽</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mi>K</mi>\n <mo>−</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <mi>K</mi>\n </msup>\n </mrow>\n <annotation>$N_2(K) \\leqslant (4K-2)^K$</annotation>\n </semantics></math> for large <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. We use the Hardy–Littlewood circle method to improve this to\n\n </p><p>The intricate structure of the coefficient matrix poses significant technical challenges for the circle method. We overcome these obstacles by generalizing the class of Diophantine systems amenable to the circle method and demonstrating that the multimagic square system belongs to this class for all <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$N \\geqslant 4$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70290","citationCount":"0","resultStr":"{\"title\":\"A circle method approach to K-multimagic squares\",\"authors\":\"Daniel Flores\",\"doi\":\"10.1112/jlms.70290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math><i>-multimagic squares</i> of order <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>. These are <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>×</mo>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$N \\\\times N$</annotation>\\n </semantics></math> magic squares that remain magic after raising each element to the <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>th power for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>⩽</mo>\\n <mi>k</mi>\\n <mo>⩽</mo>\\n <mi>K</mi>\\n </mrow>\\n <annotation>$2 \\\\leqslant k \\\\leqslant K$</annotation>\\n </semantics></math>. Given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$K \\\\geqslant 2$</annotation>\\n </semantics></math>, we consider the problem of establishing the smallest integer <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_2(K)$</annotation>\\n </semantics></math> for which there exist <i>nontrivial</i> <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-multimagic squares of order <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$N_2(K)$</annotation>\\n </semantics></math>. Previous results on multimagic squares show that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>⩽</mo>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>4</mn>\\n <mi>K</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <mi>K</mi>\\n </msup>\\n </mrow>\\n <annotation>$N_2(K) \\\\leqslant (4K-2)^K$</annotation>\\n </semantics></math> for large <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>. We use the Hardy–Littlewood circle method to improve this to\\n\\n </p><p>The intricate structure of the coefficient matrix poses significant technical challenges for the circle method. We overcome these obstacles by generalizing the class of Diophantine systems amenable to the circle method and demonstrating that the multimagic square system belongs to this class for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$N \\\\geqslant 4$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70290\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70290\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70290","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we investigate -multimagic squares of order . These are magic squares that remain magic after raising each element to the th power for all . Given , we consider the problem of establishing the smallest integer for which there exist nontrivial -multimagic squares of order . Previous results on multimagic squares show that for large . We use the Hardy–Littlewood circle method to improve this to
The intricate structure of the coefficient matrix poses significant technical challenges for the circle method. We overcome these obstacles by generalizing the class of Diophantine systems amenable to the circle method and demonstrating that the multimagic square system belongs to this class for all .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.