q点,选择性超滤波器,和幂等函数,在无选择集合理论中的应用

IF 1.2 2区 数学 Q1 MATHEMATICS
David Fernández-Bretón, Jareb Navarro-Castillo, Jesús A. Soria-Rojas
{"title":"q点,选择性超滤波器,和幂等函数,在无选择集合理论中的应用","authors":"David Fernández-Bretón,&nbsp;Jareb Navarro-Castillo,&nbsp;Jesús A. Soria-Rojas","doi":"10.1112/jlms.70249","DOIUrl":null,"url":null,"abstract":"<p>We study ultrafilters from the perspective of the algebra in the Čech–Stone compactification of the natural numbers, and idempotent elements therein. The first two results that we prove establish that, if <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is a Q-point (resp., a selective ultrafilter) and <span></span><math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>p</mi>\n </msup>\n <annotation>$\\mathcal F^p$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <msup>\n <mi>G</mi>\n <mi>p</mi>\n </msup>\n <annotation>$\\mathcal G^p$</annotation>\n </semantics></math>) is the smallest family containing <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> and closed under iterated sums (resp., closed under Blass–Frolík sums and Rudin–Keisler images), then <span></span><math>\n <semantics>\n <msup>\n <mi>F</mi>\n <mi>p</mi>\n </msup>\n <annotation>$\\mathcal F^p$</annotation>\n </semantics></math> (resp., <span></span><math>\n <semantics>\n <msup>\n <mi>G</mi>\n <mi>p</mi>\n </msup>\n <annotation>$\\mathcal G^p$</annotation>\n </semantics></math>) contains no idempotent elements. The second of these results about a selective ultrafilter has the following interesting consequence: assuming a conjecture of Blass, in models of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n <mo>[</mo>\n <mi>p</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$\\mathnormal {\\mathbf {L}(\\mathbb {R})}[p]$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>R</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathnormal {\\mathbf {L}(\\mathbb {R})}$</annotation>\n </semantics></math> is a Solovay model (of <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathnormal {\\mathsf {ZF}}$</annotation>\n </semantics></math> without choice) and <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is a selective ultrafilter, there are no idempotent elements. In particular, the theory <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathnormal {\\mathsf {ZF}}$</annotation>\n </semantics></math> plus the existence of a nonprincipal ultrafilter on <span></span><math>\n <semantics>\n <mi>ω</mi>\n <annotation>$\\omega$</annotation>\n </semantics></math> does not imply the existence of idempotent ultrafilters, which answers a question of Di Nasso and Tachtsis (Proc. Amer. Math. Soc. <b>146</b>, 397–411) that was also asked by Tachtsis (J. Symb. Log. <b>83</b>, 557–571). Following the line of obtaining independence results in <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathnormal {\\mathsf {ZF}}$</annotation>\n </semantics></math>, we finish the paper by proving that <span></span><math>\n <semantics>\n <mi>ZF</mi>\n <annotation>$\\mathnormal {\\mathsf {ZF}}$</annotation>\n </semantics></math> plus ‘every additive filter can be extended to an idempotent ultrafilter’ does not imply the Ultrafilter Theorem over <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>, answering another question of Di Nasso and Tachtsis from the aforementioned paper.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Q-points, selective ultrafilters, and idempotents, with an application to choiceless set theory\",\"authors\":\"David Fernández-Bretón,&nbsp;Jareb Navarro-Castillo,&nbsp;Jesús A. Soria-Rojas\",\"doi\":\"10.1112/jlms.70249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study ultrafilters from the perspective of the algebra in the Čech–Stone compactification of the natural numbers, and idempotent elements therein. The first two results that we prove establish that, if <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is a Q-point (resp., a selective ultrafilter) and <span></span><math>\\n <semantics>\\n <msup>\\n <mi>F</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$\\\\mathcal F^p$</annotation>\\n </semantics></math> (resp., <span></span><math>\\n <semantics>\\n <msup>\\n <mi>G</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$\\\\mathcal G^p$</annotation>\\n </semantics></math>) is the smallest family containing <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> and closed under iterated sums (resp., closed under Blass–Frolík sums and Rudin–Keisler images), then <span></span><math>\\n <semantics>\\n <msup>\\n <mi>F</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$\\\\mathcal F^p$</annotation>\\n </semantics></math> (resp., <span></span><math>\\n <semantics>\\n <msup>\\n <mi>G</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$\\\\mathcal G^p$</annotation>\\n </semantics></math>) contains no idempotent elements. The second of these results about a selective ultrafilter has the following interesting consequence: assuming a conjecture of Blass, in models of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n <mo>[</mo>\\n <mi>p</mi>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$\\\\mathnormal {\\\\mathbf {L}(\\\\mathbb {R})}[p]$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>L</mi>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathnormal {\\\\mathbf {L}(\\\\mathbb {R})}$</annotation>\\n </semantics></math> is a Solovay model (of <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathnormal {\\\\mathsf {ZF}}$</annotation>\\n </semantics></math> without choice) and <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is a selective ultrafilter, there are no idempotent elements. In particular, the theory <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathnormal {\\\\mathsf {ZF}}$</annotation>\\n </semantics></math> plus the existence of a nonprincipal ultrafilter on <span></span><math>\\n <semantics>\\n <mi>ω</mi>\\n <annotation>$\\\\omega$</annotation>\\n </semantics></math> does not imply the existence of idempotent ultrafilters, which answers a question of Di Nasso and Tachtsis (Proc. Amer. Math. Soc. <b>146</b>, 397–411) that was also asked by Tachtsis (J. Symb. Log. <b>83</b>, 557–571). Following the line of obtaining independence results in <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathnormal {\\\\mathsf {ZF}}$</annotation>\\n </semantics></math>, we finish the paper by proving that <span></span><math>\\n <semantics>\\n <mi>ZF</mi>\\n <annotation>$\\\\mathnormal {\\\\mathsf {ZF}}$</annotation>\\n </semantics></math> plus ‘every additive filter can be extended to an idempotent ultrafilter’ does not imply the Ultrafilter Theorem over <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math>, answering another question of Di Nasso and Tachtsis from the aforementioned paper.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70249\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70249","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们从代数的角度研究了超滤子在Čech-Stone自然数紧化中的作用,以及其中的幂等元。我们证明的前两个结果证明,如果p$ p$是q点(resp)。(选择性超滤波器)和F^p$ (resp。, G p$ \数学G^p$)是包含p$ p$且闭于迭代和下的最小族。,在Blass-Frolík和Rudin-Keisler图像下关闭),然后F p$ \数学F^p$ (resp。, G p$ \数学G^p$)不包含幂等元素。关于选择性超滤的第二个结果有以下有趣的结果:假设一个布拉斯的猜想,在形式为L (R) [p]$ \mathnormal {\mathbf {L}(\mathbb {R})}[p]$的模型中,其中L (R) $\mathnormal {\mathbf {L}(\mathbb {R})}$是一个Solovay模型(ofZF $\mathnormal {\mathsf {ZF}}$无选择)和p$ p$是一个选择性超滤波器,不存在幂等元。特别是,理论ZF $\mathnormal {\mathsf {ZF}}$加上ω $\ ω $上非主超滤波器的存在并不意味着幂等超滤波器的存在,这回答了Di Nasso和Tachtsis (Proc. Amer)的一个问题。数学。Soc. 146, 397-411), Tachtsis (J. Symb。日志83,557 - 571)。按照在ZF $\mathnormal {\mathsf {ZF}}$中获得独立结果的方法,我们通过证明ZF $\mathnormal {\mathsf {ZF}}$加上“每个加性滤波器都可以扩展为幂等超滤波器”并不意味着R $\mathbb {R}$上的超滤波器定理,回答了前面提到的迪·纳索和塔奇西斯的另一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Q-points, selective ultrafilters, and idempotents, with an application to choiceless set theory

We study ultrafilters from the perspective of the algebra in the Čech–Stone compactification of the natural numbers, and idempotent elements therein. The first two results that we prove establish that, if p $p$ is a Q-point (resp., a selective ultrafilter) and F p $\mathcal F^p$ (resp., G p $\mathcal G^p$ ) is the smallest family containing p $p$ and closed under iterated sums (resp., closed under Blass–Frolík sums and Rudin–Keisler images), then F p $\mathcal F^p$ (resp., G p $\mathcal G^p$ ) contains no idempotent elements. The second of these results about a selective ultrafilter has the following interesting consequence: assuming a conjecture of Blass, in models of the form L ( R ) [ p ] $\mathnormal {\mathbf {L}(\mathbb {R})}[p]$ where L ( R ) $\mathnormal {\mathbf {L}(\mathbb {R})}$ is a Solovay model (of ZF $\mathnormal {\mathsf {ZF}}$ without choice) and p $p$ is a selective ultrafilter, there are no idempotent elements. In particular, the theory ZF $\mathnormal {\mathsf {ZF}}$ plus the existence of a nonprincipal ultrafilter on ω $\omega$ does not imply the existence of idempotent ultrafilters, which answers a question of Di Nasso and Tachtsis (Proc. Amer. Math. Soc. 146, 397–411) that was also asked by Tachtsis (J. Symb. Log. 83, 557–571). Following the line of obtaining independence results in ZF $\mathnormal {\mathsf {ZF}}$ , we finish the paper by proving that ZF $\mathnormal {\mathsf {ZF}}$ plus ‘every additive filter can be extended to an idempotent ultrafilter’ does not imply the Ultrafilter Theorem over R $\mathbb {R}$ , answering another question of Di Nasso and Tachtsis from the aforementioned paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信