On the annihilator variety of a highest weight module for classical Lie algebras

IF 1.2 2区 数学 Q1 MATHEMATICS
Zhanqiang Bai, Jia-Jun Ma, Yutong Wang
{"title":"On the annihilator variety of a highest weight module for classical Lie algebras","authors":"Zhanqiang Bai,&nbsp;Jia-Jun Ma,&nbsp;Yutong Wang","doi":"10.1112/jlms.70256","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$\\mathfrak {g}$</annotation>\n </semantics></math> be a classical complex simple Lie algebra, and let <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$L(\\lambda)$</annotation>\n </semantics></math> be the irreducible highest weight module of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$\\mathfrak {g}$</annotation>\n </semantics></math> with the highest weight <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>−</mo>\n <mi>ρ</mi>\n </mrow>\n <annotation>$\\lambda -\\rho$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>ρ</mi>\n <annotation>$\\rho$</annotation>\n </semantics></math> is half the sum of positive roots. The associated variety of the annihilator ideal of <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$L(\\lambda)$</annotation>\n </semantics></math> is known as the annihilator variety of <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$L(\\lambda)$</annotation>\n </semantics></math>. It is established by Joseph that the annihilator variety of a highest weight module is the Zariski closure of a nilpotent orbit in <span></span><math>\n <semantics>\n <msup>\n <mi>g</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$\\mathfrak {g}^*$</annotation>\n </semantics></math>. However, describing this nilpotent orbit for a given highest weight module <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>(</mo>\n <mi>λ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$L(\\lambda)$</annotation>\n </semantics></math> can be quite challenging. In this paper, we present some efficient algorithms based on the Robinson–Schensted insertion algorithm to compute these orbits for classical Lie algebras. Our formulae are given by introducing two algorithms, that is, bipartition algorithm and partition algorithm. To get a special or metaplectic special partition from a domino type partition, we define the H-algorithm based on the Robinson–Schensted insertion algorithm. By using this H-algorithm, we can easily determine this nilpotent orbit from the information of <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70256","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let g $\mathfrak {g}$ be a classical complex simple Lie algebra, and let L ( λ ) $L(\lambda)$ be the irreducible highest weight module of g $\mathfrak {g}$ with the highest weight λ ρ $\lambda -\rho$ , where ρ $\rho$ is half the sum of positive roots. The associated variety of the annihilator ideal of L ( λ ) $L(\lambda)$ is known as the annihilator variety of L ( λ ) $L(\lambda)$ . It is established by Joseph that the annihilator variety of a highest weight module is the Zariski closure of a nilpotent orbit in g $\mathfrak {g}^*$ . However, describing this nilpotent orbit for a given highest weight module L ( λ ) $L(\lambda)$ can be quite challenging. In this paper, we present some efficient algorithms based on the Robinson–Schensted insertion algorithm to compute these orbits for classical Lie algebras. Our formulae are given by introducing two algorithms, that is, bipartition algorithm and partition algorithm. To get a special or metaplectic special partition from a domino type partition, we define the H-algorithm based on the Robinson–Schensted insertion algorithm. By using this H-algorithm, we can easily determine this nilpotent orbit from the information of λ $\lambda$ .

经典李代数最高权模的湮灭子变化
设g $\mathfrak {g}$是一个经典的复单李代数,设L (λ) $L(\lambda)$为g $\mathfrak {g}$的不可约最高权模,其最大权为λ−ρ $\lambda -\rho$,ρ $\rho$是正根和的一半。L (λ) $L(\lambda)$的湮灭子理想的相关变化称为L (λ) $L(\lambda)$的湮灭子变化。由Joseph建立了最高质量模的湮灭子变体是g * $\mathfrak {g}^*$中幂零轨道的Zariski闭包。然而,对于给定的最高权重模块L (λ) $L(\lambda)$,描述这个幂零轨道是相当具有挑战性的。本文基于Robinson-Schensted插入算法,给出了几种计算经典李代数轨道的有效算法。我们的公式是通过引入两种算法来给出的,即双划分算法和划分算法。为了从一个domino类型分区中得到一个特殊的或元特殊的分区,我们定义了基于Robinson-Schensted插入算法的h算法。利用这种h -算法,我们可以很容易地从λ $\lambda$的信息中确定这个幂零轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信