{"title":"随机图中的正则着色","authors":"Nina Kamčev, Mathias Schacht","doi":"10.1112/jlms.70239","DOIUrl":null,"url":null,"abstract":"<p>Rödl and Ruciński (<i>J. Amer. Math. Soc</i>. <b>8</b> (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\ell \\geqslant 2$</annotation>\n </semantics></math> they proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>p</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\hat{p}_{K_\\ell,r}(n)=n^{-\\frac{2}{\\ell +1}}$</annotation>\n </semantics></math> is a threshold for the Ramsey property that every <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-colouring of the edges of the binomial random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> yields a monochromatic copy of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>. We investigate how this result extends to arbitrary colourings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> with an unbounded number of colours. In this context, Erdős and Rado (<i>J. Lond. Math. Soc</i>. <b>25</b> (1950), 249–255) proved that any edge-colouring of a sufficiently large complete graph contains one of four canonical colourings of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>, a monochromatic, or rainbow, or <i>min</i> or <i>max</i> colouring; a <i>min-colouring</i> of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math> is a colouring in which two edges have the same colour if and only if they have the same minimal vertex. We transfer the Erdős–Rado theorem to the random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> and show that both thresholds coincide when <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\ell \\geqslant 4$</annotation>\n </semantics></math>. As a consequence, the proof yields <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$K_{\\ell +1}$</annotation>\n </semantics></math>-free graphs <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> for which every edge colouring contains a canonically coloured <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>. The 0-statement of the threshold is a direct consequence of the corresponding statement of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the 1-statement employs the transference principle of Conlon and Gowers (<i>Ann. of Math</i>. (2) <b>184</b> (2016), 367–454).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70239","citationCount":"0","resultStr":"{\"title\":\"Canonical colourings in random graphs\",\"authors\":\"Nina Kamčev, Mathias Schacht\",\"doi\":\"10.1112/jlms.70239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rödl and Ruciński (<i>J. Amer. Math. Soc</i>. <b>8</b> (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\ell \\\\geqslant 2$</annotation>\\n </semantics></math> they proved that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mover>\\n <mi>p</mi>\\n <mo>̂</mo>\\n </mover>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <mo>,</mo>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>n</mi>\\n <mrow>\\n <mo>−</mo>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\hat{p}_{K_\\\\ell,r}(n)=n^{-\\\\frac{2}{\\\\ell +1}}$</annotation>\\n </semantics></math> is a threshold for the Ramsey property that every <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-colouring of the edges of the binomial random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G(n,p)$</annotation>\\n </semantics></math> yields a monochromatic copy of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$K_\\\\ell$</annotation>\\n </semantics></math>. We investigate how this result extends to arbitrary colourings of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G(n,p)$</annotation>\\n </semantics></math> with an unbounded number of colours. In this context, Erdős and Rado (<i>J. Lond. Math. Soc</i>. <b>25</b> (1950), 249–255) proved that any edge-colouring of a sufficiently large complete graph contains one of four canonical colourings of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$K_\\\\ell$</annotation>\\n </semantics></math>, a monochromatic, or rainbow, or <i>min</i> or <i>max</i> colouring; a <i>min-colouring</i> of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$K_\\\\ell$</annotation>\\n </semantics></math> is a colouring in which two edges have the same colour if and only if they have the same minimal vertex. We transfer the Erdős–Rado theorem to the random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G(n,p)$</annotation>\\n </semantics></math> and show that both thresholds coincide when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\ell \\\\geqslant 4$</annotation>\\n </semantics></math>. As a consequence, the proof yields <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <annotation>$K_{\\\\ell +1}$</annotation>\\n </semantics></math>-free graphs <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> for which every edge colouring contains a canonically coloured <span></span><math>\\n <semantics>\\n <msub>\\n <mi>K</mi>\\n <mi>ℓ</mi>\\n </msub>\\n <annotation>$K_\\\\ell$</annotation>\\n </semantics></math>. The 0-statement of the threshold is a direct consequence of the corresponding statement of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the 1-statement employs the transference principle of Conlon and Gowers (<i>Ann. of Math</i>. (2) <b>184</b> (2016), 367–454).</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70239\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rödl and Ruciński (J. Amer. Math. Soc. 8 (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers , they proved that is a threshold for the Ramsey property that every -colouring of the edges of the binomial random graph yields a monochromatic copy of . We investigate how this result extends to arbitrary colourings of with an unbounded number of colours. In this context, Erdős and Rado (J. Lond. Math. Soc. 25 (1950), 249–255) proved that any edge-colouring of a sufficiently large complete graph contains one of four canonical colourings of , a monochromatic, or rainbow, or min or max colouring; a min-colouring of is a colouring in which two edges have the same colour if and only if they have the same minimal vertex. We transfer the Erdős–Rado theorem to the random graph and show that both thresholds coincide when . As a consequence, the proof yields -free graphs for which every edge colouring contains a canonically coloured . The 0-statement of the threshold is a direct consequence of the corresponding statement of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the 1-statement employs the transference principle of Conlon and Gowers (Ann. of Math. (2) 184 (2016), 367–454).
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.