非正则子黎曼流形之间的拟正则映射

IF 1.2 2区 数学 Q1 MATHEMATICS
Chang-Yu Guo, Sebastiano Nicolussi Golo, Marshall Williams, Yi Xuan
{"title":"非正则子黎曼流形之间的拟正则映射","authors":"Chang-Yu Guo,&nbsp;Sebastiano Nicolussi Golo,&nbsp;Marshall Williams,&nbsp;Yi Xuan","doi":"10.1112/jlms.70254","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$Q\\geqslant 2$</annotation>\n </semantics></math> has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasiregular mappings between equiregular sub-Riemannian manifolds\",\"authors\":\"Chang-Yu Guo,&nbsp;Sebastiano Nicolussi Golo,&nbsp;Marshall Williams,&nbsp;Yi Xuan\",\"doi\":\"10.1112/jlms.70254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$Q\\\\geqslant 2$</annotation>\\n </semantics></math> has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70254\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70254","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提供了一种替代方法来期望Fässler等[J]。Geom。肛。2016]通过显示齐次维数Q大于或等于2 $Q\geqslant 2$的两个非正则子黎曼流形之间的度量拟正则映射具有可忽略的分支集。一个主要的新成分是发展广义Pansu可微性理论的适当扩展,以马古利斯-莫斯托、卡尔马诺娃和沃多扬诺夫早期工作的精神。另一个新的成分是应用Heinonen、Koskela、Shanmugalingam和Tyson提出的基于上梯度的Sobolev空间理论来建立必要的分析基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasiregular mappings between equiregular sub-Riemannian manifolds

Quasiregular mappings between equiregular sub-Riemannian manifolds

Quasiregular mappings between equiregular sub-Riemannian manifolds

In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension Q 2 $Q\geqslant 2$ has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信