Canonical colourings in random graphs

IF 1.2 2区 数学 Q1 MATHEMATICS
Nina Kamčev, Mathias Schacht
{"title":"Canonical colourings in random graphs","authors":"Nina Kamčev,&nbsp;Mathias Schacht","doi":"10.1112/jlms.70239","DOIUrl":null,"url":null,"abstract":"<p>Rödl and Ruciński (<i>J. Amer. Math. Soc</i>. <b>8</b> (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\ell \\geqslant 2$</annotation>\n </semantics></math> they proved that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>p</mi>\n <mo>̂</mo>\n </mover>\n <mrow>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\hat{p}_{K_\\ell,r}(n)=n^{-\\frac{2}{\\ell +1}}$</annotation>\n </semantics></math> is a threshold for the Ramsey property that every <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-colouring of the edges of the binomial random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> yields a monochromatic copy of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>. We investigate how this result extends to arbitrary colourings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> with an unbounded number of colours. In this context, Erdős and Rado (<i>J. Lond. Math. Soc</i>. <b>25</b> (1950), 249–255) proved that any edge-colouring of a sufficiently large complete graph contains one of four canonical colourings of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>, a monochromatic, or rainbow, or <i>min</i> or <i>max</i> colouring; a <i>min-colouring</i> of <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math> is a colouring in which two edges have the same colour if and only if they have the same minimal vertex. We transfer the Erdős–Rado theorem to the random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(n,p)$</annotation>\n </semantics></math> and show that both thresholds coincide when <span></span><math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\ell \\geqslant 4$</annotation>\n </semantics></math>. As a consequence, the proof yields <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mrow>\n <mi>ℓ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$K_{\\ell +1}$</annotation>\n </semantics></math>-free graphs <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> for which every edge colouring contains a canonically coloured <span></span><math>\n <semantics>\n <msub>\n <mi>K</mi>\n <mi>ℓ</mi>\n </msub>\n <annotation>$K_\\ell$</annotation>\n </semantics></math>. The 0-statement of the threshold is a direct consequence of the corresponding statement of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the 1-statement employs the transference principle of Conlon and Gowers (<i>Ann. of Math</i>. (2) <b>184</b> (2016), 367–454).</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70239","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70239","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rödl and Ruciński (J. Amer. Math. Soc. 8 (1995), 917–942) established Ramsey's theorem for random graphs. In particular, for fixed integers r $r$ , 2 $\ell \geqslant 2$ they proved that p ̂ K , r ( n ) = n 2 + 1 $\hat{p}_{K_\ell,r}(n)=n^{-\frac{2}{\ell +1}}$ is a threshold for the Ramsey property that every r $r$ -colouring of the edges of the binomial random graph G ( n , p ) $G(n,p)$ yields a monochromatic copy of K $K_\ell$ . We investigate how this result extends to arbitrary colourings of G ( n , p ) $G(n,p)$ with an unbounded number of colours. In this context, Erdős and Rado (J. Lond. Math. Soc. 25 (1950), 249–255) proved that any edge-colouring of a sufficiently large complete graph contains one of four canonical colourings of K $K_\ell$ , a monochromatic, or rainbow, or min or max colouring; a min-colouring of K $K_\ell$ is a colouring in which two edges have the same colour if and only if they have the same minimal vertex. We transfer the Erdős–Rado theorem to the random graph G ( n , p ) $G(n,p)$ and show that both thresholds coincide when 4 $\ell \geqslant 4$ . As a consequence, the proof yields K + 1 $K_{\ell +1}$ -free graphs G $G$ for which every edge colouring contains a canonically coloured K $K_\ell$ . The 0-statement of the threshold is a direct consequence of the corresponding statement of the Rödl–Ruciński theorem and the main contribution is the 1-statement. The proof of the 1-statement employs the transference principle of Conlon and Gowers (Ann. of Math. (2) 184 (2016), 367–454).

Abstract Image

Abstract Image

Abstract Image

随机图中的正则着色
Rödl和Ruciński (J. Amer)。数学。数学学报。8(1995),917-942)建立了随机图的Ramsey定理。特别地,对于固定整数r $r$ , r小于2 $\ell \geqslant 2$ 他们证明了p ? K ?R (n) = n−2r + 1 $\hat{p}_{K_\ell,r}(n)=n^{-\frac{2}{\ell +1}}$ 拉姆齐性质的阈值是每个r $r$ -二项随机图G (n, p)边的着色 $G(n,p)$ 得到k1的单色副本 $K_\ell$ 。我们研究了这个结果如何推广到G (n, p)的任意着色。 $G(n,p)$ 有无数种颜色。在这方面,Erdős和Rado (J. Lond)。数学。Soc. 25(1950), 249-255)证明了一个足够大的完全图的任何边着色都包含kl的四个正则着色之一 $K_\ell$ 单色、彩虹色、最小色或最大色;K的最小着色 $K_\ell$ 是一种着色,当且仅当两条边具有相同的最小顶点时,它们具有相同的颜色。我们将Erdős-Rado定理转化为随机图G (n, p) $G(n,p)$ 并且表明当r大于或等于4时两个阈值重合 $\ell \geqslant 4$ 。因此,证明得到k_1 + 1 $K_{\ell +1}$ 自由图G $G$ 它的每条边着色都包含一个正则着色的k_1 $K_\ell$ 。阈值的0语句是Rödl-Ruciński定理的相应语句的直接结果,其主要贡献是1语句。1-陈述的证明采用了Conlon和Gowers (Ann。数学。(2) 184(2016), 367-454。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信