黎曼函数在局部极值处的二阶矩

IF 1.2 2区 数学 Q1 MATHEMATICS
Christopher Hughes, Solomon Lugmayer, Andrew Pearce-Crump
{"title":"黎曼函数在局部极值处的二阶矩","authors":"Christopher Hughes,&nbsp;Solomon Lugmayer,&nbsp;Andrew Pearce-Crump","doi":"10.1112/jlms.70250","DOIUrl":null,"url":null,"abstract":"<p>Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mrow>\n <msup>\n <mi>e</mi>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <mn>5</mn>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n </mfrac>\n <mi>T</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mi>log</mi>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\frac{e^2 - 5}{2 \\pi } T (\\log T)^2$</annotation>\n </semantics></math>. This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second moment of the Riemann zeta function at its local extrema\",\"authors\":\"Christopher Hughes,&nbsp;Solomon Lugmayer,&nbsp;Andrew Pearce-Crump\",\"doi\":\"10.1112/jlms.70250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <msup>\\n <mi>e</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>−</mo>\\n <mn>5</mn>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n </mrow>\\n </mfrac>\\n <mi>T</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>log</mi>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\frac{e^2 - 5}{2 \\\\pi } T (\\\\log T)^2$</annotation>\\n </semantics></math>. This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70250\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70250","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Conrey和Ghosh研究了Riemann zeta函数的第二矩,在其沿临界线的局部极值处求值,发现阶行为为e 2−5 2 π T (logt (2) $\frac{e^2 - 5}{2 \pi } T (\log T)^2$。这个问题与黎曼ζ函数及其导数的混合矩密切相关。我们提出了一种新的方法,它将揭示第二矩的低阶项在渐近展开中作为对数幂次的下降链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The second moment of the Riemann zeta function at its local extrema

The second moment of the Riemann zeta function at its local extrema

The second moment of the Riemann zeta function at its local extrema

Conrey and Ghosh studied the second moment of the Riemann zeta function, evaluated at its local extrema along the critical line, finding the leading order behaviour to be e 2 5 2 π T ( log T ) 2 $\frac{e^2 - 5}{2 \pi } T (\log T)^2$ . This problem is closely related to a mixed moment of the Riemann zeta function and its derivative. We present a new approach which will uncover the lower order terms for the second moment as a descending chain of powers of logarithms in the asymptotic expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信