Continuum limit of fourth-order Schrödinger equations on the lattice

IF 1.2 2区 数学 Q1 MATHEMATICS
Jiawei Cheng, Bobo Hua
{"title":"Continuum limit of fourth-order Schrödinger equations on the lattice","authors":"Jiawei Cheng,&nbsp;Bobo Hua","doi":"10.1112/jlms.70247","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the discrete fourth-order Schrödinger equation on the lattice <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <msup>\n <mi>Z</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$h\\mathbb {Z}^2$</annotation>\n </semantics></math>. Uniform Strichartz estimates are established by analyzing frequency localized oscillatory integrals with the method of stationary phase and applying Littlewood–Paley inequalities. As an application, we obtain the precise rate of <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> convergence from the solutions of discrete semilinear equations to those of the corresponding equations on the Euclidean plane <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> in the continuum limit <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$h \\rightarrow 0$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70247","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the discrete fourth-order Schrödinger equation on the lattice h Z 2 $h\mathbb {Z}^2$ . Uniform Strichartz estimates are established by analyzing frequency localized oscillatory integrals with the method of stationary phase and applying Littlewood–Paley inequalities. As an application, we obtain the precise rate of L 2 $L^2$ convergence from the solutions of discrete semilinear equations to those of the corresponding equations on the Euclidean plane R 2 $\mathbb {R}^2$ in the continuum limit h 0 $h \rightarrow 0$ .

晶格上四阶Schrödinger方程的连续统极限
本文考虑晶格h z2 $h\mathbb {Z}^2$上的离散四阶Schrödinger方程。用定相法分析频率局域振荡积分,应用Littlewood-Paley不等式,建立了均匀的Strichartz估计。作为一个应用程序,在连续统极限h→0下,得到了离散半线性方程的解在欧几里得平面R 2$ \mathbb {R}^2$上收敛到相应方程的解的精确速率$h \右转0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信