Chang-Yu Guo, Sebastiano Nicolussi Golo, Marshall Williams, Yi Xuan
{"title":"Quasiregular mappings between equiregular sub-Riemannian manifolds","authors":"Chang-Yu Guo, Sebastiano Nicolussi Golo, Marshall Williams, Yi Xuan","doi":"10.1112/jlms.70254","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$Q\\geqslant 2$</annotation>\n </semantics></math> has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70254","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we provide an alternative approach to an expectation of Fässler et al [J. Geom. Anal. 2016] by showing that a metrically quasiregular mapping between two equiregular sub-Riemannian manifolds of homogeneous dimension has a negligible branch set. One main new ingredient is to develop a suitable extension of the generalized Pansu differentiability theory, in spirit of earlier works by Margulis–Mostow, Karmanova, and Vodopyanov. Another new ingredient is to apply the theory of Sobolev spaces based on upper gradients developed by Heinonen, Koskela, Shanmugalingam, and Tyson to establish the necessary analytic foundations.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.