A topological algorithm for the Fourier transform of Stokes data at infinity

IF 1.2 2区 数学 Q1 MATHEMATICS
Jean Douçot, Andreas Hohl
{"title":"A topological algorithm for the Fourier transform of Stokes data at infinity","authors":"Jean Douçot,&nbsp;Andreas Hohl","doi":"10.1112/jlms.70253","DOIUrl":null,"url":null,"abstract":"<p>We give a topological description of the behaviour of Stokes matrices under the Fourier transform from infinity to infinity in a large number of cases of one level. This explicit, algorithmic statement is obtained by building on a recent result of T. Mochizuki about the Fourier transform of Stokes data of irregular connections on the Riemann sphere and by using the language of Stokes local systems due to P. Boalch. In particular, this induces explicit isomorphisms between wild character varieties, in a much larger range of examples than those for which such isomorphisms have previously been written down. We conjecture that these isomorphisms are compatible with the quasi-Hamiltonian structure on the wild character varieties.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70253","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70253","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a topological description of the behaviour of Stokes matrices under the Fourier transform from infinity to infinity in a large number of cases of one level. This explicit, algorithmic statement is obtained by building on a recent result of T. Mochizuki about the Fourier transform of Stokes data of irregular connections on the Riemann sphere and by using the language of Stokes local systems due to P. Boalch. In particular, this induces explicit isomorphisms between wild character varieties, in a much larger range of examples than those for which such isomorphisms have previously been written down. We conjecture that these isomorphisms are compatible with the quasi-Hamiltonian structure on the wild character varieties.

Abstract Image

无穷远处Stokes数据傅里叶变换的拓扑算法
在大量单阶情况下,给出了Stokes矩阵从无穷到无穷傅里叶变换的拓扑描述。这一明确的算法陈述是建立在T. Mochizuki关于Riemann球上不规则连接的Stokes数据的傅里叶变换的最新结果的基础上,并使用P. Boalch的Stokes局部系统的语言得到的。特别地,这在野生性状变种之间诱导出明显的同构,在比以前写下来的同构范围更大的例子中。我们推测这些同构与野生性状品种上的拟哈密顿结构是相容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信